cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 83 results. Next

A046906 Number of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 24, 1080, 52440, 3281880, 277953144, 32418855000, 5239070305080, 1173944480658840, 363936227764858584, 155521768202208047640, 91218870039317505477720, 73113879800794757415243480, 79743817918540500914682249144, 117883366412734188786535902826200, 235329353612778837110901775412557560
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A003431 gives isomorphism classes of these posets.

Programs

  • Mathematica
    nn = 18; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[ Series[(1 + Log[A[x]]) - A[ x] (1 - 1/A[x])^2 , {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2022 *)

Formula

From Geoffrey Critzer, Jul 09 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)(1-1/A(x))^2 where A(x) is the e.g.f. for A001035.
a(n) = A001927(n) - Sum_{k>=2} A354615(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 09 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022

A046907 Number of isomorphism classes of irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 1, 2, 7, 31, 184, 1351, 12524, 146468, 2177570, 41374407, 1008220289, 31559446774, 1269310589336, 65562045668340, 4345161435996517
Offset: 0

Views

Author

John A. Wright

Keywords

Crossrefs

Cf. A046908.

Programs

Formula

G.f.: A(x) = 2-1/B(x), where B(x) is g.f. of A000112. - Vladeta Jovovic, Jan 15 2006

Extensions

More terms from Vladeta Jovovic, Jan 15 2006

A046909 Number of isomorphism classes of connected irreducible quasiorders with n labeled points.

Original entry on oeis.org

1, 1, 1, 1, 2, 17, 167, 1672
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

Cf. A046910.

A046910 Number of connected irreducible quasiorders with n labeled points.

Original entry on oeis.org

1, 1, 1, 1, 25, 1321, 70201, 4542721, 384969649, 44087846545, 6926924885881, 1503058888234201, 451117640363382697, 186980881340749198561, 106678398214255092939169, 83440038893764124092029601, 89093417035281194970121062073, 129323858612953057624127147727913, 254190262374139251098507525465587609
Offset: 0

Views

Author

John A. Wright

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 18; A[x_] :=Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[Series[1 + Log[A[x]] - A[x] (1 - 1/A[x])^2, {x, 0, nn}], x] (* Geoffrey Critzer, Jul 10 2022 *)

Formula

From Geoffrey Critzer, Jul 10 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)*(1 - 1/A(x))^2 where A(x) is the e.g.f. for A000798.
a(n) = A001929(n) - Sum_{k>=2} A335987(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 10 2022

A046911 Number of isomorphism classes of irreducible quasiorders with n labeled points.

Original entry on oeis.org

1, 1, 2, 4, 14, 62, 373, 2722
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

Cf. A046912.

A074486 Encoding of topologies generated by classes of sets.

Original entry on oeis.org

1, 3, 9, 11, 15, 129, 131, 137, 139, 143, 153, 171, 175, 255
Offset: 0

Views

Author

Alford Arnold, Sep 26 2002

Keywords

Comments

We map {}, a, b, c, d, ... to 1, 2, 4, 16, 256, ..., i.e., to 2^0, 2^1, 2^2, 2^4, 2^8, ... . Sets with more than 1 element are mapped to the product. So ab (a shorthand notation for {a,b}) is mapped to 2^1 * 2^2 = 2^3. The topology is represented by the sum of the representations of its components.
The sequence encodes unlabeled topologies as described in A000798.

Examples

			1+2+8 = 11 (binary 1011) encodes {}, a, ab, which is the least encoding of this topology, so 11 is in the sequence.
1+4+8 = 13 (binary 1101) encodes {}, b, ab which is topologically equivalent and larger, so it is not in the sequence. The number of equivalent cases corresponding to a(n) begins 1; 1,1,2; 1,1,3,3,6,3,3,3,6; ... and is counted by A001928 (labeled topologies).
171 (binary 1011011) is in the sequence because we map {}, a, ab, ac, abc to 1 + 2 + 8 + 32 + 128.
		

Crossrefs

Extensions

Edited by Franklin T. Adams-Watters, Mar 29 2014

A173311 a(n) is the number of regular D classes in the semigroup of all binary relations on [n].

Original entry on oeis.org

1, 2, 4, 9, 25, 88, 406, 2451, 19450, 202681, 2769965, 49519392, 1154411138, 34978238590, 1373171398361, 69648249299517, 4552778914494604
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Previous name was: Partial sums of A000112.

Crossrefs

Cf. A000112, A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057, A079263, A079265, A007903.

Programs

Formula

a(n) = Sum_{i=0..n} A000112(i).

Extensions

New name from Geoffrey Critzer, May 22 2022

A213430 The number of n X n upper triangular (0,1)-matrices M with all diagonal entries 1 such that M = f(M^2) and sum(row 1) >= sum(row 2) >= ... >= sum(row n-1) >= sum(row n) = 1 and f maps any nonzero entry to 1.

Original entry on oeis.org

1, 2, 6, 26, 159, 1347, 15593, 244173, 5131436
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

Comments

A006455 is equivalent to this sequence without the nonincreasing condition on the row sums. - Petros Hadjicostas, Jul 20 2024

References

  • Collected papers of Professor Hansraj Gupta. Edited by R. J. Hans-Gill and Madhu Raka. Ramanujan Mathematical Society Collected Works Series, 3. See pp. 554-564.
  • Hansraj Gupta, Number of topologies in a finite set, Research Bulletin of the Panjab University, Vol. 19 (1968), p. 240. MR0268836.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Extensions

a(7) and new name from Petros Hadjicostas, Jul 20 2024
a(8)-a(9) from Sean A. Irvine, Jul 20 2024

A247232 Triangular array read by rows: T(n,k) is the number of pre-orders on an n-set with exactly k connected components in its digraph representation, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 3, 1, 19, 9, 1, 233, 103, 18, 1, 4851, 1735, 325, 30, 1, 158175, 43201, 7320, 785, 45, 1, 7724333, 1567783, 218491, 22960, 1610, 63, 1, 550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1, 56536880923, 6187176225, 496368181, 37205658, 2518131, 135198, 4998, 108, 1
Offset: 1

Views

Author

Geoffrey Critzer, Nov 27 2014

Keywords

Comments

The Bell transform of A001929(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			1;
3,         1;
19,        9,        1;
233,       103,      18,      1;
4851,      1735,     325,     30,     1;
158175,    43201,    7320,    785,    45,    1;
7724333,   1567783,  218491,  22960,  1610,  63,   1;
550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1;
		

Crossrefs

Column 1 = A001929.
Row sums = A000798.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[Exp[x] - 1]^y + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    topo = oeis('A001929')  # Fetch the data via Internet.
    A001929List = topo.first_terms()
    A001929 = lambda n: A001929List[n]
    bell_matrix(lambda n: A001929(n+1), 10) # Peter Luschny, Jan 18 2016, updated Mar 25 2020

Formula

E.g.f.: A(exp(x)-1)^y where A(x) is the e.g.f. for A001035.

A247659 Number of down-arrow-indecomposable topologies on n labeled points.

Original entry on oeis.org

1, 3, 22, 292, 6120, 193594, 9070536, 622336756, 61915861962, 8846814822932, 1798543906246948, 515674104905890202, 206833212761446463192, 115198617558900993580396, 88503974769306037986089170, 93233054587165663487254293572
Offset: 1

Views

Author

N. J. A. Sloane, Oct 05 2014

Keywords

Crossrefs

Programs

  • Mathematica
    A000798 = {1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203};
    f[x_] = Sum[A000798[[n+1]] x^n, {n, 0, nmax = Length[A000798]-1}];
    CoefficientList[(f[x]-1)/f[x] + O[x]^nmax, x][[2 ;; -2]] (* Jean-François Alcover, Oct 10 2018 *)

Formula

G.f.: (A000798(x)-1)/A000798(x), where A000798(x) is the g.f. of A000798.
Previous Showing 61-70 of 83 results. Next