A046906
Number of connected irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 0, 0, 24, 1080, 52440, 3281880, 277953144, 32418855000, 5239070305080, 1173944480658840, 363936227764858584, 155521768202208047640, 91218870039317505477720, 73113879800794757415243480, 79743817918540500914682249144, 117883366412734188786535902826200, 235329353612778837110901775412557560
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
A003431 gives isomorphism classes of these posets.
-
nn = 18; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
Range[0, nn]! CoefficientList[ Series[(1 + Log[A[x]]) - A[ x] (1 - 1/A[x])^2 , {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2022 *)
A046907
Number of isomorphism classes of irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 1, 2, 7, 31, 184, 1351, 12524, 146468, 2177570, 41374407, 1008220289, 31559446774, 1269310589336, 65562045668340, 4345161435996517
Offset: 0
- G. Brinkmann, B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table 1).
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
A046909
Number of isomorphism classes of connected irreducible quasiorders with n labeled points.
Original entry on oeis.org
1, 1, 1, 1, 2, 17, 167, 1672
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
A046910
Number of connected irreducible quasiorders with n labeled points.
Original entry on oeis.org
1, 1, 1, 1, 25, 1321, 70201, 4542721, 384969649, 44087846545, 6926924885881, 1503058888234201, 451117640363382697, 186980881340749198561, 106678398214255092939169, 83440038893764124092029601, 89093417035281194970121062073, 129323858612953057624127147727913, 254190262374139251098507525465587609
Offset: 0
-
nn = 18; A[x_] :=Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
Range[0, nn]! CoefficientList[Series[1 + Log[A[x]] - A[x] (1 - 1/A[x])^2, {x, 0, nn}], x] (* Geoffrey Critzer, Jul 10 2022 *)
A046911
Number of isomorphism classes of irreducible quasiorders with n labeled points.
Original entry on oeis.org
1, 1, 2, 4, 14, 62, 373, 2722
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
A074486
Encoding of topologies generated by classes of sets.
Original entry on oeis.org
1, 3, 9, 11, 15, 129, 131, 137, 139, 143, 153, 171, 175, 255
Offset: 0
1+2+8 = 11 (binary 1011) encodes {}, a, ab, which is the least encoding of this topology, so 11 is in the sequence.
1+4+8 = 13 (binary 1101) encodes {}, b, ab which is topologically equivalent and larger, so it is not in the sequence. The number of equivalent cases corresponding to a(n) begins 1; 1,1,2; 1,1,3,3,6,3,3,3,6; ... and is counted by A001928 (labeled topologies).
171 (binary 1011011) is in the sequence because we map {}, a, ab, ac, abc to 1 + 2 + 8 + 32 + 128.
A173311
a(n) is the number of regular D classes in the semigroup of all binary relations on [n].
Original entry on oeis.org
1, 2, 4, 9, 25, 88, 406, 2451, 19450, 202681, 2769965, 49519392, 1154411138, 34978238590, 1373171398361, 69648249299517, 4552778914494604
Offset: 0
A213430
The number of n X n upper triangular (0,1)-matrices M with all diagonal entries 1 such that M = f(M^2) and sum(row 1) >= sum(row 2) >= ... >= sum(row n-1) >= sum(row n) = 1 and f maps any nonzero entry to 1.
Original entry on oeis.org
1, 2, 6, 26, 159, 1347, 15593, 244173, 5131436
Offset: 1
- Collected papers of Professor Hansraj Gupta. Edited by R. J. Hans-Gill and Madhu Raka. Ramanujan Mathematical Society Collected Works Series, 3. See pp. 554-564.
- Hansraj Gupta, Number of topologies in a finite set, Research Bulletin of the Panjab University, Vol. 19 (1968), p. 240. MR0268836.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
A247232
Triangular array read by rows: T(n,k) is the number of pre-orders on an n-set with exactly k connected components in its digraph representation, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 3, 1, 19, 9, 1, 233, 103, 18, 1, 4851, 1735, 325, 30, 1, 158175, 43201, 7320, 785, 45, 1, 7724333, 1567783, 218491, 22960, 1610, 63, 1, 550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1, 56536880923, 6187176225, 496368181, 37205658, 2518131, 135198, 4998, 108, 1
Offset: 1
1;
3, 1;
19, 9, 1;
233, 103, 18, 1;
4851, 1735, 325, 30, 1;
158175, 43201, 7320, 785, 45, 1;
7724333, 1567783, 218491, 22960, 1610, 63, 1;
550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1;
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[Exp[x] - 1]^y + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
topo = oeis('A001929') # Fetch the data via Internet.
A001929List = topo.first_terms()
A001929 = lambda n: A001929List[n]
bell_matrix(lambda n: A001929(n+1), 10) # Peter Luschny, Jan 18 2016, updated Mar 25 2020
A247659
Number of down-arrow-indecomposable topologies on n labeled points.
Original entry on oeis.org
1, 3, 22, 292, 6120, 193594, 9070536, 622336756, 61915861962, 8846814822932, 1798543906246948, 515674104905890202, 206833212761446463192, 115198617558900993580396, 88503974769306037986089170, 93233054587165663487254293572
Offset: 1
-
A000798 = {1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203};
f[x_] = Sum[A000798[[n+1]] x^n, {n, 0, nmax = Length[A000798]-1}];
CoefficientList[(f[x]-1)/f[x] + O[x]^nmax, x][[2 ;; -2]] (* Jean-François Alcover, Oct 10 2018 *)
Comments