A220885
a(3)=5, a(4)=8, a(5)=12; thereafter a(n) = a(n-1) + A000931(n+7).
Original entry on oeis.org
5, 8, 12, 19, 28, 40, 56, 77, 105, 142, 191, 256, 342, 456, 607, 807, 1072, 1423, 1888, 2504, 3320, 4401, 5833, 7730, 10243, 13572, 17982, 23824, 31563, 41815, 55396, 73387, 97220, 128792, 170616, 226021, 299417, 396646, 525447, 696072, 922102, 1221528, 1618183, 2143639, 2839720, 3761831, 4983368
Offset: 3
N. J. A. Sloane, Dec 29 2012, based on an email from Ludovic Mignot, Dec 27 2012
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- P. Caron, J.-M. Champarnaud and L. Mignot, Multi-tilde-bar expressions and their automata, Acta Informatica, September 2012, Volume 49, Issue 6, pp 413-436. DOI 10.1007/s00236-012-0167-x. See the sequence t(k).
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
-
a220885 n = a220885_list !! (n-3)
a220885_list = 5 : 8 : zs where
zs = 12 : zipWith (+) zs (drop 13 a000931_list)
-- Reinhard Zumkeller, Feb 19 2013
-
Join[{5,8},LinearRecurrence[{1,1,0,-1},{12,19,28,40},50]] (* Harvey P. Dale, May 30 2014 *)
A329244
Sum of every third term of the Padovan sequence A000931.
Original entry on oeis.org
1, 2, 3, 5, 10, 22, 50, 115, 266, 617, 1433, 3330, 7740, 17992, 41825, 97230, 226031, 525457, 1221538, 2839730, 6601570, 15346787, 35676950, 82938845, 192809421, 448227522, 1042002568, 2422362080, 5631308625, 13091204282, 30433357675, 70748973085, 164471408186
Offset: 0
For n = 3, a(3) = 1+1+1+2 = 5.
-
LinearRecurrence[{4, -5, 3, -1}, {1, 2, 3, 5}, 50] (* Paolo Xausa, Apr 08 2024 *)
-
Vec((1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Nov 09 2019
-
p = lambda x:[1, 0, 0][x] if x<3 else p(x-2)+p(x-3)
a = lambda x:sum(p(3*i) for i in range(x+1))
A108169
Alternating three ratio switched sequence based on characteristic root of A000931.
Original entry on oeis.org
1, 1, 1, 3, 18, 33, 111, 690, 1269, 4292, 26705, 49118, 166165, 1033922, 1901679, 6433333, 40029886, 73626439, 249076459, 1549819116, 2850561773, 9643381402, 60003650693, 110363919984, 373358466957, 2323134396636, 4272910326315
Offset: 0
-
NSolve[x^3 - x^2 - x - 1 == 0, x] beta = 1.8392867552141612; F[1] = 1; F[2] = 1; F[n__] := F[n] = If[Mod[n, 3] == 0, Floor[beta*F[n - 1]], If[ Mod[n, 3] == 1, Floor[(beta^2)*F[n - 1]], Floor[(beta^3)*F[n - 1]]]] a = Table[F[n], {n, 1, 50}] an = Table[N[a[[n]]/a[[n - 1]]], {n, 6, 50}]
A110023
A triangle of coefficients based on A000931 and Pascal's triangle: a(n)=a(n-2)+a(n-3); t(n,m)=a(n - m + 1)*a(m + 1)*Binomial[n, m].
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 6, 6, 2, 3, 8, 24, 8, 3, 4, 15, 40, 40, 15, 4, 5, 24, 90, 80, 90, 24, 5, 7, 35, 168, 210, 210, 168, 35, 7, 9, 56, 280, 448, 630, 448, 280, 56, 9, 12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12, 16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16
Offset: 1
{1},
{1, 1},
{2, 2, 2},
{2, 6, 6, 2},
{3, 8, 24, 8, 3},
{4, 15, 40, 40, 15, 4},
{5, 24, 90, 80, 90, 24, 5},
{7, 35, 168, 210, 210, 168, 35, 7},
{9, 56, 280, 448, 630, 448, 280, 56, 9},
{12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12},
{16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}] Flatten[%]
A110102
A triangle of coefficients based on A000931: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 4, 3, 4, 4, 3, 4, 5, 4, 6, 4, 6, 4, 5, 7, 5, 8, 6, 6, 8, 5, 7, 9, 7, 10, 8, 9, 8, 10, 7, 9, 12, 9, 14, 10, 12, 12, 10, 14, 9, 12, 16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16
Offset: 1
{1},
{1, 1},
{2, 1, 2},
{2, 2, 2, 2},
{3, 2, 4, 2, 3},
{4, 3, 4, 4, 3, 4},
{5, 4, 6, 4, 6, 4, 5},
{7, 5, 8, 6, 6, 8, 5, 7},
{9, 7, 10, 8, 9, 8, 10, 7, 9},
{12, 9, 14, 10, 12, 12, 10, 14, 9, 12},
{16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A110361
A triangle of coefficients based on A000931 and A000045: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].
Original entry on oeis.org
1, 1, 1, 4, 1, 4, 6, 4, 4, 6, 15, 6, 16, 6, 15, 32, 15, 24, 24, 15, 32, 65, 32, 60, 36, 60, 32, 65, 147, 65, 128, 90, 90, 128, 65, 147, 306, 147, 260, 192, 225, 192, 260, 147, 306, 660, 306, 588, 390, 480, 480, 390, 588, 306, 660, 1424, 660, 1224, 882, 975, 1024, 975, 882
Offset: 1
{1},
{1, 1},
{4, 1, 4},
{6, 4, 4, 6},
{15, 6, 16, 6, 15},
{32, 15, 24, 24, 15, 32},
{65, 32, 60, 36, 60, 32, 65},
{147, 65, 128, 90, 90, 128, 65, 147},
{306, 147, 260, 192, 225, 192, 260, 147, 306},
{660, 306, 588, 390, 480, 480, 390, 588, 306, 660},
{1424, 660, 1224, 882, 975, 1024, 975, 882, 1224, 660, 1424}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A116585
An interleaving of three sequences: a(3n) = A000045(3n) = A014445(n). a(3n+1) = A000931(3n+5) = A052921(n). a(3n+2) = A003269(3n-1).
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 8, 4, 5, 34, 9, 14, 144, 21, 36, 610, 49, 95, 2584, 114, 250, 10946, 265, 657, 46368, 616, 1728, 196418, 1432, 4544, 832040, 3329, 11949, 3524578, 7739, 31422, 14930352, 17991, 82629, 63245986, 41824, 217286, 267914296, 97229, 571388, 1134903170
Offset: 0
- Eric Weisstein's World of Mathematics, Pisot Number.
- Index entries for linear recurrences with constant coefficients, signature (0,0,8,0,0,-17,0,0,1,0,0,11,0,0,15,0,0,2,0,0,3,0,0,5,0,0,1).
-
a[1, 0] = 0; a[1, 1] = 1; a[1, n_Integer?Positive] := a[1, n] = a[1, n - 1] + a[1, n - 2] a[2, 0] = 0; a[2, 1] = 1; a[2, 2] = 1; a[2, n_Integer?Positive] := a[2, n] = a[2, n - 2] + a[2, n - 3] a[3, 0] = 0; a[3, 1] = a[3, 2] = a[3, 3] = 1; a[3, n_Integer?Positive] := a[3, n] = a[3, n - 1] + a[3, n - 4] b = Table[a[1 + Mod[n, 3], n], {n, 0, 25}]
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 5, 9, 16, 27, 46, 77, 128, 212, 349, 573, 938, 1532, 2498, 4067, 6614, 10746, 17446, 28306, 45903, 74409, 120577, 195337, 316379, 512332, 829527, 1342940, 2173899, 3518736, 5695148, 9217213, 14916771, 24139826, 39064336
Offset: 1
-
LinearRecurrence[{1,2,0,-2,-1},{0,0,0,1,1},40] (* Harvey P. Dale, Jan 31 2024 *)
-
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,-2,0,2,1]^(n-1)*[0;0;0;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 8, 8, 27, 64, 125, 343, 729, 1728, 4096, 9261, 21952, 50653, 117649, 274625, 636056, 1481544, 3442951, 8000000, 18609625, 43243551, 100544625, 233744896, 543338496, 1263214441, 2936493568, 6826561273, 15870019697, 36892780289
Offset: 0
a(10)=27 because Padovan(10)=3 and 3^3=27.
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,-2,4,-4,-1,-1,0,-1).
-
CoefficientList[Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x]^3
A137298
Triangle read by rows: coefficients of a Hermite-like set of recursive polynomials that appear by integration to be orthogonal using the substitution on the Hermite recursion of n->f(n) where f(n)=A000931[n] is the Padovan sequence.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 2, 0, -4, 0, 1, 0, 6, 0, -6, 0, 1, -6, 0, 18, 0, -9, 0, 1, 0, -30, 0, 42, 0, -13, 0, 1, 30, 0, -120, 0, 87, 0, -18, 0, 1, 0, 240, 0, -414, 0, 178, 0, -25, 0, 1, -270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1
Offset: 1
{1},
{0, 1},
{-1, 0, 1},
{0, -2, 0, 1},
{2, 0, -4, 0, 1},
{0, 6, 0, -6, 0, 1},
{-6, 0, 18, 0, -9, 0, 1},
{0, -30, 0, 42, 0, -13, 0, 1},
{30, 0, -120, 0, 87, 0, -18, 0, 1},
{0, 240, 0, -414, 0, 178, 0, -25, 0, 1},
{-270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1}
-
f[0] = 0; f[1] = 1;f[2]=1; f[n_] := f[n] = f[n - 2] + f[n - 3]; P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - f[n]*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}] Flatten[a]
Comments