cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 241 results. Next

A220885 a(3)=5, a(4)=8, a(5)=12; thereafter a(n) = a(n-1) + A000931(n+7).

Original entry on oeis.org

5, 8, 12, 19, 28, 40, 56, 77, 105, 142, 191, 256, 342, 456, 607, 807, 1072, 1423, 1888, 2504, 3320, 4401, 5833, 7730, 10243, 13572, 17982, 23824, 31563, 41815, 55396, 73387, 97220, 128792, 170616, 226021, 299417, 396646, 525447, 696072, 922102, 1221528, 1618183, 2143639, 2839720, 3761831, 4983368
Offset: 3

Views

Author

N. J. A. Sloane, Dec 29 2012, based on an email from Ludovic Mignot, Dec 27 2012

Keywords

Programs

  • Haskell
    a220885 n = a220885_list !! (n-3)
    a220885_list = 5 : 8 : zs where
       zs = 12 : zipWith (+) zs (drop 13 a000931_list)
    -- Reinhard Zumkeller, Feb 19 2013
  • Mathematica
    Join[{5,8},LinearRecurrence[{1,1,0,-1},{12,19,28,40},50]] (* Harvey P. Dale, May 30 2014 *)

Formula

a(3)=5, a(4)=8, a(5)=12; thereafter a(n) = a(n-1) + Pad(n) + 2*Pad(n+1) + 2*Pad(n+2), where Pad() = A000931().
a(n) = a(n-1)+a(n-2)-a(n-4) for n>8. G.f.: x^3*(x^5+2*x^4-x^3-x^2+3*x+5) / ((x-1)*(x^3+x^2-1)). [Colin Barker, Jan 04 2013]
a(n) = a(n-1) + A000931(n+7) for n > 5. - Reinhard Zumkeller, Feb 19 2013
a(n) = a(n-2) + a(n-3) + 9 for n >= 8. - Greg Dresden, May 18 2020

Extensions

Simpler definition from Reinhard Zumkeller, Dec 30 2012

A329244 Sum of every third term of the Padovan sequence A000931.

Original entry on oeis.org

1, 2, 3, 5, 10, 22, 50, 115, 266, 617, 1433, 3330, 7740, 17992, 41825, 97230, 226031, 525457, 1221538, 2839730, 6601570, 15346787, 35676950, 82938845, 192809421, 448227522, 1042002568, 2422362080, 5631308625, 13091204282, 30433357675, 70748973085, 164471408186
Offset: 0

Views

Author

David Nacin, Nov 09 2019

Keywords

Examples

			For n = 3, a(3) = 1+1+1+2 = 5.
		

Crossrefs

Partial sums of A034943.
Cf. A000931.

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 3, -1}, {1, 2, 3, 5}, 50] (* Paolo Xausa, Apr 08 2024 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Nov 09 2019
  • Python
    p = lambda x:[1, 0, 0][x] if x<3 else p(x-2)+p(x-3)
    a = lambda x:sum(p(3*i) for i in range(x+1))
    

Formula

a(n) = Sum_{i=0..n} A000931(3*i).
a(n) = A000931(3n+2)+1.
From Colin Barker, Nov 09 2019: (Start)
G.f.: (1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)).
a(n) = 4*a(n-1) - 5*a(n-2) + 3*a(n-3) - a(n-4) for n>3. (End)

A108169 Alternating three ratio switched sequence based on characteristic root of A000931.

Original entry on oeis.org

1, 1, 1, 3, 18, 33, 111, 690, 1269, 4292, 26705, 49118, 166165, 1033922, 1901679, 6433333, 40029886, 73626439, 249076459, 1549819116, 2850561773, 9643381402, 60003650693, 110363919984, 373358466957, 2323134396636, 4272910326315
Offset: 0

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Limit[a(n)/a(n-1),n->Infinity]={1.83929, 3.38298, 6.22226}

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 == 0, x] beta = 1.8392867552141612; F[1] = 1; F[2] = 1; F[n__] := F[n] = If[Mod[n, 3] == 0, Floor[beta*F[n - 1]], If[ Mod[n, 3] == 1, Floor[(beta^2)*F[n - 1]], Floor[(beta^3)*F[n - 1]]]] a = Table[F[n], {n, 1, 50}] an = Table[N[a[[n]]/a[[n - 1]]], {n, 6, 50}]

Formula

if Mod[n, 3]=0 then F[n] = Floor[beta*F[n-1]] if Mod[n, 3]=1 then F[n] = Floor[beta^2*F[n-1]] if Mod[n, 3]=2 then F[n] = Floor[beta^3*F[n-1]] a(n) = F[n]

A110023 A triangle of coefficients based on A000931 and Pascal's triangle: a(n)=a(n-2)+a(n-3); t(n,m)=a(n - m + 1)*a(m + 1)*Binomial[n, m].

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 6, 2, 3, 8, 24, 8, 3, 4, 15, 40, 40, 15, 4, 5, 24, 90, 80, 90, 24, 5, 7, 35, 168, 210, 210, 168, 35, 7, 9, 56, 280, 448, 630, 448, 280, 56, 9, 12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12, 16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 24 2008

Keywords

Comments

Row sums are:
{1, 2, 6, 16, 46, 118, 318, 840, 2216, 5898, 15584}

Examples

			{1},
{1, 1},
{2, 2, 2},
{2, 6, 6, 2},
{3, 8, 24, 8, 3},
{4, 15, 40, 40, 15, 4},
{5, 24, 90, 80, 90, 24, 5},
{7, 35, 168, 210, 210, 168, 35, 7},
{9, 56, 280, 448, 630, 448, 280, 56, 9},
{12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12},
{16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}] Flatten[%]

Formula

a(n)=a(n-2)+a(n-3); t(n,m)=a(n - m + 1)*a(m + 1)*Binomial[n, m].

A110102 A triangle of coefficients based on A000931: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 4, 3, 4, 4, 3, 4, 5, 4, 6, 4, 6, 4, 5, 7, 5, 8, 6, 6, 8, 5, 7, 9, 7, 10, 8, 9, 8, 10, 7, 9, 12, 9, 14, 10, 12, 12, 10, 14, 9, 12, 16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 24 2008

Keywords

Comments

Row sums are:
{1, 2, 5, 8, 14, 22, 34, 52, 77, 114, 166}

Examples

			{1},
{1, 1},
{2, 1, 2},
{2, 2, 2, 2},
{3, 2, 4, 2, 3},
{4, 3, 4, 4, 3, 4},
{5, 4, 6, 4, 6, 4, 5},
{7, 5, 8, 6, 6, 8, 5, 7},
{9, 7, 10, 8, 9, 8, 10, 7, 9},
{12, 9, 14, 10, 12, 12, 10, 14, 9, 12},
{16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1).

A110361 A triangle of coefficients based on A000931 and A000045: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].

Original entry on oeis.org

1, 1, 1, 4, 1, 4, 6, 4, 4, 6, 15, 6, 16, 6, 15, 32, 15, 24, 24, 15, 32, 65, 32, 60, 36, 60, 32, 65, 147, 65, 128, 90, 90, 128, 65, 147, 306, 147, 260, 192, 225, 192, 260, 147, 306, 660, 306, 588, 390, 480, 480, 390, 588, 306, 660, 1424, 660, 1224, 882, 975, 1024, 975, 882
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 24 2008

Keywords

Comments

Row sums are:
{1, 2, 9, 20, 58, 142, 350, 860, 2035, 4848, 11354}.

Examples

			{1},
{1, 1},
{4, 1, 4},
{6, 4, 4, 6},
{15, 6, 16, 6, 15},
{32, 15, 24, 24, 15, 32},
{65, 32, 60, 36, 60, 32, 65},
{147, 65, 128, 90, 90, 128, 65, 147},
{306, 147, 260, 192, 225, 192, 260, 147, 306},
{660, 306, 588, 390, 480, 480, 390, 588, 306, 660},
{1424, 660, 1224, 882, 975, 1024, 975, 882, 1224, 660, 1424}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].

A116585 An interleaving of three sequences: a(3n) = A000045(3n) = A014445(n). a(3n+1) = A000931(3n+5) = A052921(n). a(3n+2) = A003269(3n-1).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 8, 4, 5, 34, 9, 14, 144, 21, 36, 610, 49, 95, 2584, 114, 250, 10946, 265, 657, 46368, 616, 1728, 196418, 1432, 4544, 832040, 3329, 11949, 3524578, 7739, 31422, 14930352, 17991, 82629, 63245986, 41824, 217286, 267914296, 97229, 571388, 1134903170
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[1, 0] = 0; a[1, 1] = 1; a[1, n_Integer?Positive] := a[1, n] = a[1, n - 1] + a[1, n - 2] a[2, 0] = 0; a[2, 1] = 1; a[2, 2] = 1; a[2, n_Integer?Positive] := a[2, n] = a[2, n - 2] + a[2, n - 3] a[3, 0] = 0; a[3, 1] = a[3, 2] = a[3, 3] = 1; a[3, n_Integer?Positive] := a[3, n] = a[3, n - 1] + a[3, n - 4] b = Table[a[1 + Mod[n, 3], n], {n, 0, 25}]

Extensions

Edited by N. J. A. Sloane, Apr 09 2008
More terms from Amiram Eldar, Jun 09 2025

A129973 a(n) = A000045(n) - A000931(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 9, 16, 27, 46, 77, 128, 212, 349, 573, 938, 1532, 2498, 4067, 6614, 10746, 17446, 28306, 45903, 74409, 120577, 195337, 316379, 512332, 829527, 1342940, 2173899, 3518736, 5695148, 9217213, 14916771, 24139826, 39064336
Offset: 1

Views

Author

Roger L. Bagula, Jun 13 2007

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,0,-2,-1},{0,0,0,1,1},40] (* Harvey P. Dale, Jan 31 2024 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,-2,0,2,1]^(n-1)*[0;0;0;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x^4/((1-x-x^2)(1-x^2-x^3)). a(n)=a(n-1)+2*a(n-2)-2*a(n-4)-a(n-5). - R. J. Mathar, Oct 30 2008

A133038 Cubes of A000931.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 8, 8, 27, 64, 125, 343, 729, 1728, 4096, 9261, 21952, 50653, 117649, 274625, 636056, 1481544, 3442951, 8000000, 18609625, 43243551, 100544625, 233744896, 543338496, 1263214441, 2936493568, 6826561273, 15870019697, 36892780289
Offset: 0

Views

Author

Omar E. Pol, Nov 02 2007

Keywords

Examples

			a(10)=27 because Padovan(10)=3 and 3^3=27.
		

Crossrefs

Cf. A000578, A030078, A056570. Padovan sequence: A000931.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x]^3

Formula

a(n) = A000931(n)^3.
a(n) = a(n-1)+2*a(n-2)+3*a(n-3)-2*a(n-4)+4*a(n-5)-4*a(n-6)-a(n-7)-a(n-8)-a(n-10).
G.f.: (x^9-x^8+x^7+x^6-5*x^5+x^4-2*x^3-2*x^2-x+1) / ((x-1) * (x^3-2*x^2+3*x-1) * (x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1)). - Colin Barker, Sep 18 2013

A137298 Triangle read by rows: coefficients of a Hermite-like set of recursive polynomials that appear by integration to be orthogonal using the substitution on the Hermite recursion of n->f(n) where f(n)=A000931[n] is the Padovan sequence.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 2, 0, -4, 0, 1, 0, 6, 0, -6, 0, 1, -6, 0, 18, 0, -9, 0, 1, 0, -30, 0, 42, 0, -13, 0, 1, 30, 0, -120, 0, 87, 0, -18, 0, 1, 0, 240, 0, -414, 0, 178, 0, -25, 0, 1, -270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 14 2008

Keywords

Comments

The number-like behavior of the Padovan sequence made me think that I might get a orthogonal polynomial set by this substitution:
Table[Integrate[Exp[ -x2/2]*P[x,n]*P[x, n + 1], {x, -Infinity, Infinity}], {n, 0, 10}];
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
The row sums are:
Table[Apply[Plus, CoefficientList[P[x, n], x]], {n, 0, 10}];
{1, 1, 0, -1, -1, 1, 4, 0, -20, -20, 160}
The tiling property of the Fibonacci and Padovan sequences makes me think that other sequence of fundamental number theory "beta Integer-like" sequences might give orthogonal polynomials as well.

Examples

			{1},
{0, 1},
{-1, 0, 1},
{0, -2, 0, 1},
{2, 0, -4, 0, 1},
{0, 6, 0, -6, 0, 1},
{-6, 0, 18, 0, -9, 0, 1},
{0, -30, 0, 42, 0, -13, 0, 1},
{30, 0, -120, 0, 87, 0, -18, 0, 1},
{0, 240, 0, -414, 0, 178, 0, -25, 0, 1},
{-270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1}
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[1] = 1;f[2]=1; f[n_] := f[n] = f[n - 2] + f[n - 3]; P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - f[n]*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}] Flatten[a]

Formula

a(n) = a(n-2)+a(n-3): A000931(n); p(x,0)=1;p(x,1)=x; p(x,n)=x*p(x,n-1)-a(n)*p(n,n-2)
Previous Showing 31-40 of 241 results. Next