cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1154 results. Next

A376597 Inflection and undulation points in the sequence of prime-powers inclusive (A000961).

Original entry on oeis.org

1, 2, 3, 6, 8, 14, 15, 16, 27, 32, 50, 61, 67, 72, 85, 92, 93, 124, 129, 132, 136, 141, 185, 190, 211, 214, 221, 226, 268, 292, 301, 302, 322, 374, 394, 423, 456, 463, 502, 503, 547, 559, 560, 593, 604, 640, 646, 663, 671, 675, 710, 726, 727, 746, 754, 755
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376596) are zero.
Inclusive means 1 is a prime-power. For the exclusive version, subtract 1 and shift left.

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with zeros (A376597) at:
  1, 2, 3, 6, 8, 14, 15, 16, 27, 32, 50, 61, 67, 72, 85, 92, 93, 124, 129, 132, ...
		

Crossrefs

The first differences were A057820, see also A053707, A376340.
These are the zeros of A376596 (sorted firsts A376653, exclusive A376654).
The complement is A376598.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376596 (second differences), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000],#==1||PrimePowerQ[#]&],2],0]

A095874 a(n) = k if n = A000961(k) (powers of primes), a(n) = 0 if n is not in A000961.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 6, 7, 8, 0, 9, 0, 10, 0, 0, 11, 12, 0, 13, 0, 0, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 19, 0, 0, 0, 0, 20, 0, 0, 0, 21, 0, 22, 0, 0, 0, 23, 0, 24, 0, 0, 0, 25, 0, 0, 0, 0, 0, 26, 0, 27, 0, 0, 28, 0, 0, 29, 0, 0, 0, 30, 0, 31, 0, 0, 0, 0, 0, 32, 0, 33, 0, 34, 0, 0, 0, 0, 0, 35, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

The name has been edited to clarify that the indices k refer to A000961 ("powers of primes" = {1} U A246655) and not to the list A246655 of proper prime powers. - M. F. Hasler, Jun 16 2021

Crossrefs

Cf. A000961 (right inverse), A049084, A097621.

Programs

  • Haskell
    a095874 n | y == n    = length xs + 1
              | otherwise = 0
              where (xs, y:ys) = span (< n) a000961_list
    -- Reinhard Zumkeller, Feb 16 2012, Jun 26 2011
    
  • Mathematica
    Join[{1},Module[{k=2},Table[If[PrimePowerQ[n],k;k++,0],{n,2,100}]]] (* Harvey P. Dale, Aug 15 2020 *)
  • PARI
    a(n)=if(isprimepower(n), sum(i=1,logint(n,2), primepi(sqrtnint(n,i)))+1, n==1) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    {M95874=Map(); A095874(n,k)=if(mapisdefined(M95874,n,&k),k, isprimepower(n), mapput(M95874,n, k=sum(i=1,exponent(n), primepi(sqrtnint(n,i)))+1); k,n==1)} \\ Variant with memoization, possibly useful to compute A097621, A344826 and related. One may omit "isprimepower(n)," (possibly requiring factorization) and ",n==1" if n is known to be a power of a prime, i.e., to get a left inverse for A000961. - M. F. Hasler, Jun 15 2021
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A095874(n): return 1+int(primepi(n)+sum(primepi(integer_nthroot(n,k)[0]) for k in range(2,n.bit_length()))) if n==1 or len(primefactors(n))==1 else 0 # Chai Wah Wu, Jan 19 2025

Formula

a(n) = Sum_{1 <= k <= n} A010055(k); [corrected by M. F. Hasler, Jun 15 2021]
a(n) = A065515(n)*(A065515(n)-A065515(n-1)).
a(n) = A065515(n)*A069513(n). - M. F. Hasler, Jun 16 2021

Extensions

Edited by M. F. Hasler, Jun 15 2021

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A376598 Points of nonzero curvature in the sequence of prime-powers inclusive (A000961).

Original entry on oeis.org

4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376596) are nonzero.
Inclusive means 1 is a prime-power. For the exclusive version, subtract 1 from all terms.

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with nonzeros at (A376598):
  4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, ...
		

Crossrefs

The first differences were A057820, see also A376340.
First differences are A376309.
These are the nonzeros of A376596 (sorted firsts A376653, exclusive A376654).
The complement is A376597.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
`A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (second differences), A376597 (inflections and undulations), A376653 (sorted firsts in second differences).
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376601 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000], #==1||PrimePowerQ[#]&],2]],1|-1]

A376653 Sorted positions of first appearances in the second differences of consecutive prime-powers inclusive (A000961).

Original entry on oeis.org

1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, 206, 207, 216, 244, 245, 304, 325, 327, 402, 466, 484, 605, 801, 880, 939, 1033, 1055, 1077, 1234, 1281, 1721, 1890, 1891, 1906, 1940, 1960, 1962, 2257, 2290, 2410, 2880, 3150
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with first appearances (A376653):
  1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, ...
		

Crossrefs

For first differences we had A057820, sorted firsts A376340(n)+1 (except first term).
These are the sorted positions of first appearances in A376596.
The exclusive version is a(n) - 1 = A376654(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[100],#==1||PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A333852 Irregular triangle read by rows: representative simple difference sets of Singer type of order m, for m = A000961(n), for n >= 1.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 1, 5, 0, 1, 3, 9, 0, 1, 4, 6, 0, 1, 5, 11, 0, 1, 8, 10, 0, 1, 4, 14, 16, 0, 1, 6, 8, 18, 0, 1, 3, 8, 12, 18, 0, 1, 3, 10, 14, 26, 0, 1, 4, 6, 13, 21, 0, 1, 4, 10, 12, 17, 0, 1, 6, 18, 22, 29, 0, 1, 8, 11, 13, 17, 0, 1, 11, 19, 26, 28, 0, 1, 14, 20, 24, 29, 0, 1, 15, 19, 21, 24, 0, 1, 15, 20, 22, 28
Offset: 1

Views

Author

Wolfdieter Lang, Jul 26 2020

Keywords

Comments

The length of row n is (A000961(n) + 1)*A335866(n) = {2, 6, 16, 10, 60, 96, ...}. Every representative difference set begins with 0, 1, ... .
A simple difference set of Singer type of order m in the additive group (Z_v(m),+), with complete residue system modulo v(m) chosen as RS(v(m)) = {0, 1, ..., v(m)-1}, where v(m) := m^2 + m + 1, is denoted by (v(m), m+1, 1), provided m = m(n) = A000961(n) (powers of primes), for n >= 1. It is defined by a set of m+1 integers {a_0, a_1, ..., a_m}, with a_j from RS(v(m)) such that the m*(m+1) differences d_{i, j} := a_i - a_j (mod v(m)), with i not j, give (in some order) the nonzero members of RS(v(m)) i.e., {1,2, ..., (m+1)*m} exactly once. (v is a notation used in block designs, originating from 'variety'; see the Stinson reference, p. 2.)
A representative difference set of this type is one which uses 0 and 1 as elements. By adding each element of a given representative difference set by 1, 2, ..., (m+1)*m, modulo m^2 + m + 1, all m^2 + m + 1 members of a class of difference sets are obtained. This equivalence class is called Dev(D), the development of a difference set $D$. The number of representative difference sets, hence the number of classes, has been conjectured by Singer, and is given in A335866(n). The difference sets will here be ordered increasingly. The set of all A335866(n) representative difference sets of this type will here be denoted by Sr(m) (also increasingly ordered). See the W. Lang link for these representatives of order m = m(n) = A000961(n), for n = 1, 2, ..., 11. The set of all difference sets of order m will be denoted by S(m).
A symmetric BIBD (Balanced Incomplete Block Design) is a block design (X, A) (X a set of points, A a set of nonempty subsets of A, called blocks), denoted by (v, k, lambda) with v = |A|, k = |B_i|, v > k >= 2, for each block B_i from A, and each pair of distinct points of X appears exactly in lambda blocks. The number of appearances of each point of X (the replication number) is r = lambda*(v-1)/(k-1), and the number of blocks is b = v*r/k. For symmetric BIBDs v = b. See, e.g., the Stinson reference, p. 2 and pp. 41 - 58.
A symmetric and simple (lambda = 1) BIBD (symsBIBD) (m^2+m+1, m+1, 1), with k = r = m+1 and b = v = m*(m+1) + 1, is called a projective plane of order m, if m >= 2. The trivial case (3, 2, 1) for m = 1 (a triangle) is not regarded as a projective plane. m = 2 gives the Fano plane (7, 3, 1). See Stinson, p. 27, and the links. Not all m values allow such a symsBIBD. Singer proved that for m a power of a prime (including 1) such symsBIBD exist.
See the Singer reference, Theorem, pp. 380-381, where this is called a perfect difference set of order m + 1 (not m like here, and in Stinson). There only one representative is given for allowed m values. The other ones can be obtained by using certain multipliers M from the restricted residue system RRS(v = m^2+m+1), and omitting powers of divisors of m, applied to each entry, taken modulo v(m). There are A335866(n) - 1 other representative difference sets. For more details see Stinson, sect. 3.4., pp. 54-58. In the W. Lang link all representative difference sets for m = 1, 2, 3, 4, 5, 7, 8, 9, 11, 13 and 16 are given, with explanations on how to find them using Stinson's approach.
A general card game Dobble (see the Goertz link) can use v = m*(m+1) + 1 cards with k = m+1 distinct symbols from a repertoire of v distinct symbols, where m is a power of a prime. The task is to find out the one common symbol of any pair of cards. E.g., m = 7, v = 57, k = 8. One can compose 12 = A335866(6) possible such 57 card decks with different distributions of the 8 from 57 symbols.

Examples

			The irregular triangle T(n, k) begins (0 1 3 stands for the set {0, 1, 3}, etc., and a vertical bar separates the sets):
n,  m \ k  1 2 3  4  5 6 7 8 9 10 11 12 13 14 15  16 ...
--------------------------------------------------------
1,  1:     0 1
2,  2:     0 1 3| 0  1 5
3,  3:     0 1 3  9| 0 1 4 6|0  1  5 11| 0  1  8  10
4,  4:     0 1 4 14 16|0 1 6 8 18
...
--------------------------------------------------------
n = 5, m = 5: {0, 1, 3, 8, 12, 18}, {0, 1, 3, 10, 14, 26}, {0, 1, 4, 6, 13, 21}, {0, 1, 4, 10, 12, 17}, {0, 1, 6, 18, 22, 29}, {0, 1, 8, 11, 13, 17}, {0, 1, 11, 19, 26, 28}, {0, 1, 14, 20, 24, 29}, {0, 1, 15, 19, 21, 24}, {0, 1, 15, 20, 22, 28};
n = 6, m = 7: {0, 1, 3, 13, 32, 36, 43, 52}, {0, 1, 4, 9, 20, 22, 34, 51}, {0, 1, 4, 12, 14, 30, 37, 52}, {0, 1, 5, 7, 17, 35, 38, 49}, {0, 1, 5, 27, 34, 37, 43, 45}, {0, 1, 6, 15, 22, 26, 45, 55}, {0, 1, 6, 21, 28, 44, 46, 54}, {0, 1, 7, 19, 23, 44, 47, 49}, {0, 1, 7, 24, 36, 38, 49, 54}, {0, 1, 9, 11, 14, 35, 39, 51}, {0, 1, 9, 20, 23, 41, 51, 53}, {0, 1, 13, 15, 21, 24, 31, 53}.
...
For n = 7..11, that is m = 8, 9, 11, 13, 16, see the W. Lang link.
------------------------------------------------------------------
n = 1, m = 1, v = 3, difference set of type (3, 2, 1): There is only one representative set Sr(2) ={{0, 1}}, and the translates are {1, 2} and {2, 0}, reordered as {0, 2}, giving one class of three difference sets S(3) = {{0, 1}, {0, 2}, {1, 2}} (ordered lexicographically). This describes a triangle, not considered as a projective plane of order m = 1. {0, 1} is a simple difference set because 0 - 1 = -1 == 2 (mod 3), 1 - 0 = 1, and each nonzero element of RS(3) appeared exactly once.
		

References

  • Douglas R. Stinson, Combinatorial Designs, Springer, 2004.

Crossrefs

Programs

  • PARI
    \\ See second Ralf Goertz link
    \\ The function a333852_row(m,all=0) computes the complete row corresponding
    \\ to a given m of the table if "all" is 1. If "all" is set to 0 a random
    \\ choice of one of the normalized difference sets of order m is returned.

A138929 Twice the prime powers A000961.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 32, 34, 38, 46, 50, 54, 58, 62, 64, 74, 82, 86, 94, 98, 106, 118, 122, 128, 134, 142, 146, 158, 162, 166, 178, 194, 202, 206, 214, 218, 226, 242, 250, 254, 256, 262, 274, 278, 298, 302, 314, 326, 334, 338, 346, 358, 362, 382
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2008

Keywords

Comments

Except for the initial term a(1)=2, indices k such that A020513(k)=Phi[k](-1) is prime, where Phi is a cyclotomic polynomial.
This is illustrated by the PARI code, although it is probably more efficient to calculate a(n) as 2*A000961(n).
{ a(n)/2 ; n>1 } are also the indices for which A020500(k)=Phi[k](1) is prime.
A188666(k) = A000961(k+1) for k: a(k) <= k < a(k+1), k > 0;
A188666(a(n)) = A000961(n+1). [Reinhard Zumkeller, Apr 25 2011]

Crossrefs

Cf. A000961, A020513, A138920-A138940, A230078 (complement).

Programs

  • Maple
    a := n -> `if`(1>=nops(numtheory[factorset](n)),2*n,NULL):
    seq(a(i),i=1..192); # Peter Luschny, Aug 12 2009
  • Mathematica
    Join[{2}, Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -1]] &]] (* Robert G. Wilson v, Mar 25 2012 - modified by Paolo Xausa, Aug 30 2024 to include a(1) *)
    2*Join[{1}, Select[Range[500], PrimePowerQ]] (* Paolo Xausa, Aug 30 2024 *)
  • PARI
    print1(2);for( i=1,999, isprime( polcyclo(i,-1)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-2)... in PARI < 2.4.2. It should be more efficient to calculate a(n) as 2*A000961(n) ! */
    
  • Python
    from sympy import primepi, integer_nthroot
    def A138929(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax<<1 # Chai Wah Wu, Aug 29 2024

Formula

a(n) = 2*A000961(n).
Equals {2} union { k | Phi[k](-1)=A020513(k) is prime } = {2} union { 2k | Phi[k](1)=A020500(k) is prime }.

A210208 Triangle read by rows in which row n lists the divisors of n that are prime powers, A000961.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 1, 11, 1, 2, 3, 4, 1, 13, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 9, 1, 19, 1, 2, 4, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 4, 8, 1, 5, 25, 1, 2, 13, 1, 3, 9, 27, 1, 2, 4, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2012

Keywords

Comments

{T(n,k): k = 1..A073093(n)} subset of {A027750(n,k): k = 1..A000005(n)} for all n.

Examples

			Table begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5;
  1, 11;
  1, 2, 3, 4; - _Geoffrey Critzer_, Feb 08 2015
		

Crossrefs

Cf. A073093 (row lengths), A023888 (row sums), A034699 (row maxima), A183091 (row products).

Programs

  • Haskell
    a210208 n k = a210208_tabf !! (n-1) !! (n-1)
    a210208_row n = a210208_tabf !! (n-1)
    a210208_tabf = map (filter ((== 1) . a010055)) a027750_tabf
    
  • Mathematica
    Table[Prepend[Select[Divisors[n], PrimeNu[#] == 1 &], 1], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 08 2015 *)
  • PARI
    row(n) = select(x -> omega(x) < 2, divisors(n)); \\ Amiram Eldar, May 02 2025

Formula

A034699(n) = T(n,A073093(n)) = maximum of n-th row.

A024918 Partial sums of the sequence of prime powers (A000961).

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 30, 39, 50, 63, 79, 96, 115, 138, 163, 190, 219, 250, 282, 319, 360, 403, 450, 499, 552, 611, 672, 736, 803, 874, 947, 1026, 1107, 1190, 1279, 1376, 1477, 1580, 1687, 1796, 1909, 2030, 2155, 2282, 2410, 2541, 2678, 2817, 2966, 3117, 3274, 3437
Offset: 1

Views

Author

Den Roussel (DenRoussel(AT)webtv.net)

Keywords

Comments

The subsequence of prime partial sums of prime powers begins: 3, 79, 163, 499, 947, 1279, 5297. What is the smallest value which is a prime power p^k for k>1? [Jonathan Vos Post, Feb 11 2010]

Crossrefs

Programs

  • Mathematica
    FoldList[Plus, 1, Select[Range[150], PrimePowerQ]] (* Amiram Eldar, Jun 22 2025 *)
  • PARI
    ispp1(n) = isprimepower(n) || (n==1); \\ A000961
    lista(nn) = {my(s=0); for (n=1, nn, if (ispp1(n), s+= n; print1(s, ", ")););} \\ Michel Marcus, Mar 26 2020

Extensions

Offset 1 from Michel Marcus, Mar 26 2020

A024923 Partial products of the sequence of prime powers (A000961).

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 6720, 60480, 665280, 8648640, 138378240, 2352430080, 44696171520, 1028011944960, 25700298624000, 693908062848000, 20123333822592000, 623823348500352000, 19962347152011264000, 738606844624416768000, 30282880629601087488000, 1302163867072846761984000
Offset: 1

Views

Author

Den Roussel (DenRoussel(AT)webtv.net)

Keywords

Crossrefs

Subsequence of A025487.
The distinct terms in A308819.
Indices of records in A385378.

Programs

  • Mathematica
    FoldList[Times, 1, Select[Range[50], PrimePowerQ]] (* Amiram Eldar, Jun 27 2025 *)
  • PARI
    ispp1(n) = isprimepower(n) || (n==1); \\ A000961
    lista(nn) = {my(s=1); for (n=1, nn, if (ispp1(n), s*= n; print1(s, ", ")););} \\ Michel Marcus, Mar 26 2020

Extensions

Offset 1 and more terms from Michel Marcus, Mar 26 2020
Previous Showing 11-20 of 1154 results. Next