cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A290646 Number of dissections of an n-gon into 3- and 4-gons counted up to rotations and reflections.

Original entry on oeis.org

1, 2, 2, 7, 14, 53, 171, 691, 2738, 11720, 50486, 224012, 1005468, 4581815, 21093190, 98093226, 459986674, 2173599817, 10340539744, 49496519950, 238240366274, 1152543685463, 5601603835982, 27341242042238, 133977037982121, 658902522544060, 3251446102879398
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one triangle and one quadrangle.
		

Crossrefs

Cf. A001004 (counted distinctly).

Programs

  • Mathematica
    (* See A295419 for DissectionsModDihedral. *)
    DissectionsModDihedral[Boole[# == 3 || # == 4]& /@ Range[1, 30]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ See A295419 for DissectionsModDihedral.
    DissectionsModDihedral(apply(v->v==3||v==4, [1..25])) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017

A290722 Number of dissections of a 2n-gon into polygons with even number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 2, 4, 13, 48, 238, 1325, 8297, 54519, 373363, 2621872, 18797682, 136969519, 1011903735, 7564219361, 57129086391, 435394899361, 3345082819597, 25885718422329, 201619294539406, 1579629974876090, 12442262963919863, 98483477967355109, 783017782731507416
Offset: 2

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(4) = 4 the dissections of an octagon are: two dissections into 3 quadrangles; a dissection into one hexagon and one quadrangle; a dissection into one octagon.
		

Crossrefs

Cf. A003168 (counted distinctly).

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral().
    select(v->v>0, DissectionsModDihedral(apply(v->v%2==0, [1..50]))) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Nov 22 2017

A380362 Triangle read by rows: T(n,k) is the number of Halin graphs on n unlabeled nodes with circuit rank k, 3 <= k <= n-1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 3, 6, 3, 1, 0, 0, 0, 0, 7, 11, 3, 1, 0, 0, 0, 0, 4, 24, 17, 4, 1, 0, 0, 0, 0, 0, 24, 51, 26, 4, 1, 0, 0, 0, 0, 0, 12, 89, 109, 36, 5, 1, 0, 0, 0, 0, 0, 0, 74, 265, 194, 50, 5, 1, 0, 0, 0, 0, 0, 0, 27, 371, 660, 345, 65, 6, 1
Offset: 4

Views

Author

Andrew Howroyd, Jan 25 2025

Keywords

Comments

The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves.
The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs.
T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotations and reflections.

Examples

			Triangle begins:
  n\k| 3  4  5  6  7   8   9   10  11  12  13
-----+----------------------------------------
   4 | 1;
   5 | 0, 1;
   6 | 0, 1, 1;
   7 | 0, 0, 1, 1;
   8 | 0, 0, 1, 2, 1;
   9 | 0, 0, 0, 3, 2,  1;
  10 | 0, 0, 0, 3, 6,  3,  1;
  11 | 0, 0, 0, 0, 7, 11,  3,   1;
  12 | 0, 0, 0, 0, 4, 24, 17,   4,  1;
  13 | 0, 0, 0, 0, 0, 24, 51,  26,  4,  1;
  14 | 0, 0, 0, 0, 0, 12, 89, 109, 36,  5,  1;
   ...
		

Crossrefs

Row sums are A346779.
Column sums are A001004.
Main diagonal is A000012.
Central coefficients are A000207.

Programs

  • PARI
    \\ See PARI Link for program code.
    { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }

Formula

T(n,k) = A295634(k, n-k).

A111563 Number of connected outerplanar graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 46, 172, 777, 3783, 20074, 111604, 646409, 3846640, 23410035, 144965988, 910898943, 5794179218, 37248630398, 241676806702, 1580880366039, 10416314047854, 69080674190341, 460841447382976, 3090747326749823
Offset: 1

Views

Author

Stefan Vigerske, Nov 17 2005

Keywords

Crossrefs

Formula

Generating function and cycle index sum known, see Vigerske or Bodirsky, Fusy, Kang and Vigerske.

A111564 Number of outerplanar graphs on n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 10, 25, 80, 277, 1150, 5291, 26918, 145744, 828856, 4872771, 29395784, 180857382, 1130700488, 7163245811, 45895629266, 296937363511, 1937625709854, 12739784808937, 84331837321404, 561647630439975, 3761221057579892
Offset: 1

Views

Author

Stefan Vigerske, Nov 17 2005

Keywords

Crossrefs

Formula

Generating function and cycle index sum known, see Vigerske, or Bodirsky, Fusy, Kang and Vigerske.

A290571 Number of dissections of an n-gon into 3- and 5-gons counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 7, 22, 60, 208, 695, 2566, 9451, 36158, 139574, 548347, 2174801, 8719651, 35244472, 143581782, 588858667, 2430036786, 10083626092, 42055927173, 176217259551, 741517642476, 3132564196880, 13281805256068, 56503895845238, 241135999611542
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one pentagon.
		

Crossrefs

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral().
    DissectionsModDihedral(apply(v->v==3||v==5, [1..25])) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017

A290816 Number of dissections of an n-gon into polygons with odd number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 65, 223, 757, 2824, 10559, 40994, 160734, 641420, 2584587, 10528305, 43237978, 178974779, 745814185, 3127246179, 13185588894, 55878618492, 237905685582, 1017225981255, 4366536472758, 18812074137141, 81320795918871, 352638701880227
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one pentagon.
		

Crossrefs

Cf. A049124 (counted distinctly).

Programs

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017

A003457 a(n) = ceiling(Bernoulli(2n)/(-4n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, -1, 14, -140, 1804, -27413, 487469, -10026347, 236192434, -6317862397, 190439655627, -6425425249652, 241207241774251, -10020155328258126, 458387180159766539, -22989944171828251745, 1259023596072554784855, -75008667460769643668557
Offset: 1

Views

Author

Keywords

References

  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
  • Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.

Crossrefs

Cf. A003414 (floor instead of ceiling).

Programs

  • Mathematica
    Table[Ceiling[BernoulliB[2n]/(-4n)], {n, 24}] (* Alonso del Arte, Jul 11 2012 *)

A111757 Number of bipartite 2-connected outerplanar graphs on n unlabeled nodes.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 4, 0, 13, 0, 48, 0, 238, 0, 1325, 0, 8297, 0, 54519, 0, 373363, 0, 2621872, 0, 18797682, 0, 136969519, 0, 1011903735, 0, 7564219361, 0, 57129086391, 0, 435394899361, 0, 3345082819597, 0, 25885718422329, 0, 201619294539406, 0, 1579629974876090
Offset: 1

Views

Author

Stefan Vigerske, Nov 21 2005

Keywords

Comments

Also the number of bipartite (unlabeled) dissections of a polygon.

Crossrefs

Even bisection gives A290722.

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral.
    {my(N=50); DissectionsModDihedral(vector(N, n, n%2==0)) + vector(N, n, n==2)} \\ Andrew Howroyd, Feb 12 2021

Formula

Generating function and cycle index sum known, see Vigerske.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 12 2021

A375617 Numbers of facially complete 2-connected planar embeddings.

Original entry on oeis.org

0, 0, 1, 3, 6, 15, 32, 94, 295, 1169, 4870, 22110, 102490, 489479, 2370856, 11655722, 57918613, 290697549, 1471349079, 7504192109, 38532719288, 199076246027, 1034236802988, 5400337234593, 28329240686563, 149244907924935, 789351357094770, 4190055030317638
Offset: 1

Views

Author

Eric W. Weisstein, Aug 21 2024

Keywords

Programs

  • Mathematica
    prism[n_] := Floor[((n - 3)^2 + 6)/12]
    tetrahedral[n_] := prism[n - 1]
    bipartite[n_] := prism[n - 2]
    wheel[n_] := (Mod[n - 1, 2] + 3) 2^Quotient[n - 1, 2]/4 + DivisorSum[n - 1, EulerPhi[#] 2^((n - 1)/#) &]/(2 (n - 1)) - 3
    cycle[n_] := Module[{f, F, x},
      f[x_, m_] := x + Sum[(Binomial[s - 2, r - 1] Binomial[r + s - 1, s] x^s)/r, {r, m}, {s, 2, m}];
      F[x_, m_] := Series[((3 x^2 - 2 x f[x, m] + f[x, m]^2) - (2 + 2 x + 7 x^2 - 4 x f[x, m] + 2 f[x, m]^2) f[x^2, m] + 2 f[x^2, m]^2)/(4 (2 f[x^2, m] - 1)) + Sum[If[Mod[k, d] == 0, (EulerPhi[d] f[x^d, m]^(k/d))/k, 0], {k, 3, m}, {d, k}]/2, {x, 0, m}];
      CoefficientList[F[x, n], x][[-1]]]
    a[1] = a[2] = 0;
    a[n_] := prism[n] + tetrahedral[n] + bipartite[n] + wheel[n] + cycle[n]
    Table[a[n], {n, 20}]

Formula

a(n) = A001399(n - 6) + A001399(n - 7) + A001399(n - 8) + (A056342(n - 1) - 1) + A001004(n).
Previous Showing 11-20 of 20 results.