A159949 Numerator of Hermite(n, 1/24).
1, 1, -287, -863, 247105, 1241281, -354589919, -2499523487, 712353753217, 6471255867265, -1839949672471199, -20477166570194399, 5808483395818564033, 76577571062410406977, -21670384262882293332575, -330431150786521054263839, 93285628864864986142460161
Offset: 0
Examples
Numerators of 1, 1/12, -287/144, -863/1728, 247105/20736, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..428
Crossrefs
Cf. A001021 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(1/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],1/24]] (* Harvey P. Dale, Nov 05 2016 *) Table[12^n*HermiteH[n, 1/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 1/24)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018
Formula
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 12^n * Hermite(n, 1/24).
E.g.f.: exp(x - 144*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/12)^(n-2*k)/(k!*(n-2*k)!)). (End)
Comments