cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A175527 Digit sum of 13^n.

Original entry on oeis.org

1, 4, 16, 19, 22, 25, 37, 40, 34, 46, 67, 52, 55, 58, 97, 73, 85, 88, 91, 85, 115, 91, 121, 106, 109, 121, 133, 118, 121, 133, 163, 184, 169, 181, 193, 169, 172, 175, 178, 199, 193, 214, 226, 238, 169, 190, 247, 241, 208, 247, 232, 253, 292, 241, 316, 292, 268, 271, 301, 286, 298, 337, 304, 325
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

It is surprising that many values repeat twice (for 85, 91, 121, 133, 169 this happens at a(n) = a(n+3) (but 169 occurs later for a third time), for 193, 241, 292, ... the second occurrence comes later) while many other values never occur. Is there a simple explanation? - M. F. Hasler, May 18 2017

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), this sequence (k=13).

Programs

  • Mathematica
    Table[Total[IntegerDigits[13^k]], {k,0,1000}]
  • PARI
    a(n)=sumdigits(13^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001022(n)). - Michel Marcus, Nov 01 2013
a(n) ~ 4.5*log_10(13)*n ~ 5.0127*n (conjectured). - M. F. Hasler, May 18 2017

A116629 Positive integers k such that 13^k == 3 (mod k).

Original entry on oeis.org

1, 2, 5, 166, 287603, 9241538, 2366680105, 8347156585, 21682897793, 6988245760865, 9045859950329, 10076294257985, 50299408064905, 254874726648713
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Nov 24 2017
Some larger terms: 1440926367749746685, 76025040962646716305439353859479569558065. - Max Alekseyev, Jun 29 2011

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), this sequence (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1, 2}, Select[Range[1, 5000], Mod[13^#, #] == 3 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1, 2}, Select[Range[10000000], PowerMod[13, #, #] == 3 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 3; \\ Michel Marcus, Nov 19 2017

Extensions

Two more terms from Ryan Propper, Jan 09 2008
Terms 1,2 are prepended and a(9)-a(14) are added by Max Alekseyev, Jun 29 2011; Nov 24 2017

A116611 Positive integers n such that 13^n == 5 (mod n).

Original entry on oeis.org

1, 2, 4, 44, 82, 236, 25433, 177764, 219244, 86150213, 107218402, 1260236441, 12856300141, 447650116364, 657175627369, 14543842704596, 125035120614917
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15.
Some larger terms: 99790373907467602, 846248577183963835642742, 273781047810302314432122404459324, 4174626353309446327489382394518975030641698849116, 211*(13^211-5)/12607932861823674049268705845744 (207 digits). - Max Alekseyev, Jun 29 2011

Examples

			44 is in this sequence because 13^44 = 10315908977942302627204470186314316211062255002161 = 234452476771415968800101595143507186615051250049*44 + 5 == 5 (mod 44).
		

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), this sequence (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1, 2}, Select[Range[1000000], PowerMod[13, #, #] == 5 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    is(n) = Mod(13,n)^n==5; \\ Charles R Greathouse IV, Jun 08 2015

Extensions

More terms from Ryan Propper, Apr 01 2006
Terms 1,2,4 are prepended and a(13)-a(17) are added by Max Alekseyev, Jun 29 2011, Nov 27 2017

A116620 Positive integers n such that 13^n == 10 (mod n).

Original entry on oeis.org

1, 3, 9, 74853, 1275039, 27181907, 31261887, 989255061, 4813809711, 3187842157567, 313768710194691
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Nov 06 2018
9909932321420413420533943 is a term. - Max Alekseyev, Jun 29 2011

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), this sequence (k=10), A116638 (k=11), A116639 (k=15).
Cf. A116609.

Programs

  • Mathematica
    Join[{1, 3, 9}, Select[Range[2000000], PowerMod[13, #, #] == 10 &]] (* Robert Price, Apr 10 2020 *)

Extensions

More terms from Ryan Propper, Jun 12 2006
Terms 1,3,9 prepended and a(10)-a(11) added by Max Alekseyev, Jun 29 2011, Nov 06 2018

A116630 Positive integers n such that 13^n == 4 (mod n).

Original entry on oeis.org

1, 3, 51, 129, 125869, 158287, 1723647, 1839003, 90808797, 3661886147, 7368982721, 130424652229, 1616928424359, 4003183891851, 66657658685869
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Nov 26 2017
Some larger terms: 84058689739550643018360088224267, 11083544368708558891212925543084197628431243723. - Max Alekseyev, Jun 26 2011

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963(k=-1), A116621 (k=1), A116622 (k=2), A116629(k=3), this sequence (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A116639 (k=15)

Programs

  • Mathematica
    Join[{1, 3}, Select[Range[1, 5000], Mod[13^#, #] == 4 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1, 3}, Select[Range[2000000], PowerMod[13, #, #] == 4 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 4; \\ Michel Marcus, Nov 19 2017

Extensions

More terms from Ryan Propper, Jan 09 2008
Terms 1,3 prepended and a(12)-a(15) added by Max Alekseyev, Jun 26 2011, Nov 26 2017

A116631 Positive integers n such that 13^n == 6 (mod n).

Original entry on oeis.org

1, 7, 8743, 50239, 312389, 8789977, 87453889, 96301009, 3963715129, 5062673539, 6854133309107, 16987071590111, 72278468169733, 411419589731633, 590475819370933
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. A large term: 2455610470454186971078168169. - Max Alekseyev, Dec 19 2017

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), this sequence (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1}, Select[Range[1, 9000], Mod[13^#, #] == 6 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1}, Select[Range[10000000], PowerMod[13, #, #] == 6 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 6; \\ Michel Marcus, Nov 19 2017

Extensions

More terms from Ryan Propper, Mar 30 2007
Term 1 is prepended and a(11)-a(15) added by Max Alekseyev, Jun 29 2011, Dec 19 2017

A116636 Positive integers k such that 13^k == 9 (mod k).

Original entry on oeis.org

1, 2, 4, 8, 10, 172, 296, 332, 410, 872, 1048, 1070, 1544, 2830, 3470, 7486, 9196, 22184, 90892, 121174, 299816, 575206, 885112, 1329388, 1386430, 2518994, 4167272, 5600212, 8475016, 9180370, 12348446, 18483076, 19185890, 20806274, 28984094, 37114141
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

For k > 9 in this sequence, A116609(k) = 9. - Iain Fox, Nov 20 2017

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), this sequence (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).
Cf. A116609.

Programs

  • Mathematica
    Join[{1, 2, 4, 8}, Select[Range[1, 9000], Mod[13^#, #] == 9 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1,2,4,8},Select[Range[38*10^6],PowerMod[13,#,#]==9&]] (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    isok(n) = Mod(13, n)^n == 9; \\ Michel Marcus, Nov 19 2017

Extensions

More terms from Ryan Propper, Nov 05 2006
Terms 1,2,4,8 prepended by Max Alekseyev, Jun 28 2011

A153651 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+5)*prime(j)*T(n-2, k-1) with j=6, read by rows.

Original entry on oeis.org

2, 13, 13, 2, 334, 2, 2, 2195, 2195, 2, 2, 2483, 52152, 2483, 2, 2, 2771, 368520, 368520, 2771, 2, 2, 3059, 726360, 8194776, 726360, 3059, 2, 2, 3347, 1125672, 61619496, 61619496, 1125672, 3347, 2, 2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  13,   13;
   2,  334,       2;
   2, 2195,    2195,         2;
   2, 2483,   52152,      2483,          2;
   2, 2771,  368520,    368520,       2771,         2;
   2, 3059,  726360,   8194776,     726360,      3059,       2;
   2, 3347, 1125672,  61619496,   61619496,   1125672,    3347,    2;
   2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), this sequence (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A001022 (powers of 13).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,1,5,6): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,1,5,6], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,1,5,6) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+5)*prime(j)*T(n-2, k-1) with j=6.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,5,6).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for j=6, = 2*A001022(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 06 2021

A116638 Positive integers n such that 13^n == 11 (mod n).

Original entry on oeis.org

1, 2, 158, 301823, 1851103, 8616098, 60528467, 1087582634, 1628818307, 16205558969
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Nov 07 2018
Large terms: 38763675625170712166, 527929122195463909516681113715859203.

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620 (k=10), this sequence (k=11), A116639 (k=15).
Cf. A116609.

Programs

  • Mathematica
    Join[{1, 2}, Select[Range[1, 9000], Mod[13^#, #] == 11 &]] (* G. C. Greubel, Nov 20 2017 *)
    Join[{1, 2}, Select[Range[10000000], PowerMod[13, #, #] == 11 &]] (* Robert Price, Apr 10 2020 *)

Extensions

More terms from Ryan Propper, Jan 11 2008
Edited by Max Alekseyev, May 04 2010

A008573 Digits of powers of 13.

Original entry on oeis.org

1, 1, 3, 1, 6, 9, 2, 1, 9, 7, 2, 8, 5, 6, 1, 3, 7, 1, 2, 9, 3, 4, 8, 2, 6, 8, 0, 9, 6, 2, 7, 4, 8, 5, 1, 7, 8, 1, 5, 7, 3, 0, 7, 2, 1, 1, 0, 6, 0, 4, 4, 9, 9, 3, 7, 3, 1, 3, 7, 8, 5, 8, 4, 9, 1, 8, 4, 9, 1, 7, 9, 2, 1, 6, 0, 3, 9, 4, 0, 3, 7, 2, 3, 2, 9, 8, 0, 8, 5, 1, 2, 2, 4, 8, 1, 3, 0, 2, 8
Offset: 0

Views

Author

Keywords

Comments

The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  1, 3;
  1, 6, 9;
  2, 1, 9, 7;
  2, 8, 5, 6, 1;
  3, 7, 1, 2, 9, 3;
  4, 8, 2, 6, 8, 0, 9;
  ...
		

Crossrefs

Programs

  • Mathematica
    IntegerDigits/@(13^Range[0,20])//Flatten (* Harvey P. Dale, Oct 24 2017 *)
Previous Showing 11-20 of 68 results. Next