cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A180696 14^a(n) is smallest power of 14 beginning with n.

Original entry on oeis.org

0, 3, 4, 11, 5, 26, 6, 20, 34, 7, 14, 28, 35, 1, 15, 22, 29, 36, 2, 9, 16, 23, 71, 30, 37, 44, 3, 10, 58, 17, 65, 24, 31, 120, 38, 86, 45, 4, 52, 11, 59, 18, 107, 25, 114, 73, 32, 121, 80, 39, 87, 46, 5, 94, 53, 12, 101, 60, 19, 108, 67, 26, 115, 204, 74, 33, 122, 81, 170, 40
Offset: 1

Views

Author

Daniel Mondot, Sep 18 2010

Keywords

Crossrefs

A067414 Seventh column of triangle A067410.

Original entry on oeis.org

1, 8, 112, 1568, 21952, 307328, 4302592, 60236288, 843308032, 11806312448, 165288374272, 2314037239808, 32396521357312, 453551299002368, 6349718186033152, 88896054604464128, 1244544764462497792
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067413 (sixth column), A067415 (eighth column), A001023 (powers of 14).

Formula

a(n) = A067410(n+6, 6).
a(n) = 8*14^(n-1), n>=1, a(0)=1.
G.f.: (1-6*x)/(1-14*x).

A013719 a(n) = 14^(2*n + 1).

Original entry on oeis.org

14, 2744, 537824, 105413504, 20661046784, 4049565169664, 793714773254144, 155568095557812224, 30491346729331195904, 5976303958948914397184, 1171355575953987221848064, 229585692886981495482220544
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001023 (14^n).

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 196*a(n-1), a(0)=14.
G.f.: 14/(1-196*x). (End)

A013754 a(n) = 14^(3*n + 1).

Original entry on oeis.org

14, 38416, 105413504, 289254654976, 793714773254144, 2177953337809371136, 5976303958948914397184, 16398978063355821105872896, 44998795805848373114515226624, 123476695691247935826229781856256, 338820052976784335907174521413566464, 929722225368296217729286886758826377216
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001023.

Programs

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 2744*a(n-1); a(0)=14.
G.f.: 14/(1-2744*x).
a(n) = A013755(n)/14. (End)

A013755 a(n) = 14^(3*n + 2).

Original entry on oeis.org

196, 537824, 1475789056, 4049565169664, 11112006825558016, 30491346729331195904, 83668255425284801560576, 229585692886981495482220544, 629983141281877223603213172736, 1728673739677471101567216945987584, 4743480741674980702700443299789930496
Offset: 0

Views

Author

Keywords

Examples

			From _Philippe Deléham_, Dec 02 2008: (Start)
a(n) = 2744*a(n-1); a(0)=196.
G.f.: 196/(1-2744*x).
a(n) = 14*A013754(n). (End)
		

Crossrefs

Subsequence of A001023.

Programs

A160193 Numerator of Hermite(n, 5/28).

Original entry on oeis.org

1, 5, -367, -5755, 402817, 11037925, -734331695, -29632858075, 1866841880705, 102262852326725, -6074903893493615, -431244900588230075, 24038761085803317505, 2148769817796050860325, -111757677404273451703855, -12351237147086094379982875, 595378957401697424118753025
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 5/14, -367/196, -5755/2744, 402817/38416, 11037925/537824,..
		

Crossrefs

Cf. A001023 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(5/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Maple
    A160193 := proc(n)
            orthopoly[H](n,5/28) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator/@HermiteH[Range[0,20],5/28] (* Harvey P. Dale, Jul 11 2011 *)
    Table[14^n*HermiteH[n, 5/28], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,5/28)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -5*a(n-1) +392*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 14^n * Hermite(n, 5/28).
E.g.f.: exp(5*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/14)^(n-2*k)/(k!*(n-2*k)!)). (End)

A227871 Sum of digits of 14^n.

Original entry on oeis.org

1, 5, 16, 17, 22, 29, 37, 23, 52, 44, 67, 65, 73, 68, 52, 80, 85, 83, 100, 122, 106, 116, 130, 137, 118, 140, 124, 152, 166, 173, 136, 158, 178, 179, 202, 128, 199, 176, 187, 206, 220, 227, 244, 230, 232, 224, 256, 272, 253, 275, 268, 278, 301, 272, 298, 257
Offset: 0

Views

Author

Irene Sermon, Oct 25 2013

Keywords

Examples

			For n=9, 14^9=20661046784 and the sum of the digits is 44.
		

Crossrefs

Programs

  • Mathematica
    Total[IntegerDigits[#]]&/@(14^Range[0,60]) (* Harvey P. Dale, Jul 18 2019 *)

Formula

a(n) = A007953(A001023(n)).

A123187 Triangle of coefficients in expansion of (1+13x)^n.

Original entry on oeis.org

1, 1, 13, 1, 26, 169, 1, 39, 507, 2197, 1, 52, 1014, 8788, 28561, 1, 65, 1690, 21970, 142805, 371293, 1, 78, 2535, 43940, 428415, 2227758, 4826809, 1, 91, 3549, 76895, 999635, 7797153, 33787663, 62748517, 1, 104, 4732, 123032, 1999270, 20792408
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 03 2006

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,13} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			1
1, 13
1, 26, 169
1, 39, 507, 2197
1, 52, 1014, 8788, 28561
1, 65, 1690, 21970, 142805, 371293
		

Crossrefs

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+13*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    p[0, x] = 1; p[1, x] = 13*x + 1; p[k_, x_] := p[k, x] = (13*x + 1)*p[k - 1, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

p(k, x) = (13*x + 1)*p(k - 1, x).
T(n,k) = 13^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*12^(n-i). Row sums are 14^n = A001023. G.f.: 1 / [1 - x(1+13y)]. - Mircea Merca, Apr 28 2012

A160184 Numerator of Hermite(n, 1/28).

Original entry on oeis.org

1, 1, -391, -1175, 458641, 2301041, -896635319, -6308683751, 2454058631585, 22238090874721, -8635680761357159, -95808996990263479, 37141246445981806129, 487826768288181211345, -188783965120435102822039, -2865977269485973590683399, 1107183737638672431002905921
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 1/14, -391/196, -1175/2744, 458641/38416, ...
		

Crossrefs

Cf. A001023 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(1/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
  • Mathematica
    Table[14^n*HermiteH[n, 1/28], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 1/28)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x - 196*x^2))) \\ G. C. Greubel, Sep 24 2018
    

Formula

From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 14^n * Hermite(n, 1/28).
E.g.f.: exp(x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/14)^(n-2*k)/(k!*(n-2*k)!)). (End)

A160192 Numerator of Hermite(n, 3/28).

Original entry on oeis.org

1, 3, -383, -3501, 439905, 6809283, -841785951, -18540791469, 2254238275137, 64906636872195, -7758232724066751, -277708714711204653, 32620373362042216353, 1404202914087633336771, -162020813910704234524575, -8192328034245044455772973, 928105401692205765637182081
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 3/14, -383/196, -3501/2744, 439905/38416, ...
		

Crossrefs

Cf. A001023 (denominators)

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(3/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
  • Mathematica
    Table[14^n*HermiteH[n, 3/28], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 3/28)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(3*x - 196*x^2))) \\ G. C. Greubel, Sep 24 2018
    

Formula

From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 14^n * Hermite(n, 3/28).
E.g.f.: exp(3*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
Previous Showing 11-20 of 33 results. Next