cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A165836 Totally multiplicative sequence with a(p) = 15.

Original entry on oeis.org

1, 15, 15, 225, 15, 225, 15, 3375, 225, 225, 15, 3375, 15, 225, 225, 50625, 15, 3375, 15, 3375, 225, 225, 15, 50625, 225, 225, 3375, 3375, 15, 3375, 15, 759375, 225, 225, 225, 50625, 15, 225, 225, 50625, 15, 3375, 15, 3375, 3375, 225, 15, 759375, 225, 3375
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Programs

  • Mathematica
    15^PrimeOmega[Range[100]](* G. C. Greubel, Apr 09 2016 *)

Formula

a(n) = A001024(A001222(n)) = 15^bigomega(n) = 15^A001222(n).

A239285 a(n) = (15^n - (-2)^n)/17.

Original entry on oeis.org

0, 1, 13, 199, 2977, 44671, 670033, 10050559, 150758257, 2261374111, 33920611153, 508809168319, 7632137522737, 114482062845151, 1717230942669073, 25758464140052479, 386376962100754417, 5795654431511381791, 86934816472670595793, 1304022247090059199039
Offset: 0

Views

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 = (k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1| < 1. Thus, a(n+1)/a(n) converges to r1 as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 with k=13 and t=30.
If n > 20, then |a(n+1)/a(n) - 15| < 10^(-16).
Let b(n) be the number of strings of length n containing the 13-ary digits: 0,...,9,A,B,C or the 30 two-consecutive digits D0,D1,...,D9,DA,...,DT where A corresponds to 10, ..., T corresponds to 29. Then b(0)=1=a(2) and b(1)=13=a(3). The strings q_1q_2...q_n of length n can be partitioned into 2 groups A and B where A contains the strings where q_1=0,1,...,9,A,B,C and B contains the strings where q_1=D. Thus, |A|=13*b(n-1) and |B|=30*b(n-2). Hence, b(n) = 13*b(n-1) + 30*b(n-2) for n>1. Since b(0)=a(2) and b(1)=a(3), we can show that b(n) = a(n+2).

Crossrefs

Programs

  • Magma
    [(15^n -(-2)^n)/17: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[x/(1-13*x-30*x^2), {x,0,50}], x] (* or *) Table[
    (15^n - (-2)^n)/17, {n,0,30}] (* or *) LinearRecurrence[{13,30}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n) = (15^n-(-2)^n)/17; \\ Michel Marcus, Mar 16 2014
    
  • PARI
    x='x+O('x^30); concat([0], Vec()) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: x/(1 - 13*x - 30*x^2).
a(n) = 13*a(n-1) + 30*a(n-2) for n >= 2, a(0)=0, a(1)=1.
a(n) = (1/17)*(A001024(n) - A122803(n)), n >= 0.
a(0)=0, a(n) = Sum_{k=0..n-1} A001024(k)*A122803(n-1-k) for n > 0.
E.g.f.: (exp(15*x) - exp(-2*x))/17. - G. C. Greubel, May 26 2018

A061252 a(n) = 16^n - 15^n.

Original entry on oeis.org

0, 1, 31, 721, 14911, 289201, 5386591, 97576081, 1732076671, 30276117361, 522861237151, 8942430185041, 151728638820031, 2557404559011121, 42864668012537311, 715027614225987601, 11878335717996660991
Offset: 0

Views

Author

Frank Ellermann, Jun 05 2001

Keywords

Comments

Number of ways to assign truth values to n quaternary conjunctions connected by disjunctions such that the proposition is true. For example, a(2) = 31, since for the proposition '(a & b & c & d) v (e & f & g & h)' there are 31 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over the alphabet {0,1,..,15} with at least one letter = 15. - Joerg Arndt, Jan 01 2023

Crossrefs

Base 8: A016177, 4: A005061, 2: A000225, 10: A016189.

Programs

  • Mathematica
    Table[16^n-15^n,{n,0,20}] (* or  *) LinearRecurrence[{31,-240},{0,1},20] (* Harvey P. Dale, Jan 23 2021 *)
  • PARI
    a(n) = 16^n - 15^n; \\ Michel Marcus, Aug 26 2013

Formula

a(0)=0, a(n) = 15*a(n-1) + 16^(n-1). - Vincenzo Librandi, Feb 09 2011
a(0)=0, a(1)=1, a(n) = 31*a(n-1) - 240*a(n-2). - Vincenzo Librandi, Feb 09 2011
a(n) = A001025(n) - A001024(n). - Michel Marcus, Aug 26 2013

A091480 Table of multigraphs (by antidiagonals) with n (>=1) nodes and k (>=0) edges. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 6, 1, 0, 1, 27, 36, 10, 1, 0, 1, 81, 216, 100, 15, 1, 0, 1, 243, 1296, 1000, 225, 21, 1, 0, 1, 729, 7776, 10000, 3375, 441, 28, 1, 0, 1, 2187, 46656, 100000, 50625, 9261, 784, 36, 1, 0, 1, 6561, 279936, 1000000, 759375
Offset: 1

Views

Author

Christian G. Bower, Jan 13 2004

Keywords

Examples

			1  0   0    0     0 ...
1  1   1    1     1 ...
1  3   9   27    81 ...
1  6  36  216  1296 ...
1 10 100 1000 10000 ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).

Crossrefs

Columns 0-8: A000012, A000217(n-1), A000537(n-1), A059827(n-1), A059977(n-1), A059860(n-1), A059978(n-1), A059979(n-1), A059980(n-1).
Cf. A091478.

Formula

a(n, k) = binomial(n, 2)^k.

A239294 a(n) = (15^n - (-3)^n)/18.

Original entry on oeis.org

0, 1, 12, 189, 2808, 42201, 632772, 9492309, 142382448, 2135743281, 32036129532, 480542002029, 7208129853288, 108121948330761, 1621829223367092, 24327438355289349, 364911575314991328, 5473673629767916641, 82105104446389609452
Offset: 0

Views

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2=(k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1|< 1. Thus, a(n+1)/a(n) converges to r1 as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 with k=12 and t=45. Thus, we use this as the name of the sequence.
If n > 25, then |a(n+1)/a(n) - 15| < 10^(-16).
a(n+2) is the number of strings of length n containing the 12-ary digits 0,1,...,9,A,B or any of the 45 two-consecutive digits C0,C1,...,C9,CA,...,CZ,Ca,...,Ci where A corresponds to 10, B to 11, ..., Z to 35, a to 36, ..., i to 44.

Programs

  • Mathematica
    Table[(15^n-(-3)^n)/18,{n,0,20}] (* or *) LinearRecurrence[{12,45},{0,1},20] (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    a(n) = (15^n - (-3)^n)/18; \\ Michel Marcus, Mar 16 2014

Formula

G.f.: x/((1-15*x)*(1+3*x)).
a(n) = 12*a(n-1)+45*a(n-2), for n>=2, a(0)=0, a(1)=1.
a(n) = (1/18)*(A001024(n) - (-1)^n * A000244(n)).
a(n) = A000244(n-1) * Sum_{k=0...n-1} (A000351(k) * A033999(n-1-k)).
Previous Showing 31-35 of 35 results.