A013891
a(n) = 19^(5*n + 2).
Original entry on oeis.org
361, 893871739, 2213314919066161, 5480386857784802185939, 13569980418174090907801371961, 33600614943460448322716069311260139, 83198449060887472631428936505541918917761, 206007596521214410095208558252435839890349094339
Offset: 0
A013892
a(n) = 19^(5*n + 3).
Original entry on oeis.org
6859, 16983563041, 42052983462257059, 104127350297911241532841, 257829627945307727248226067259, 638411683925748518131605316913942641, 1580770532156861979997149793605296459437459, 3914144333903073791808962606796280957916632792441
Offset: 0
A013893
a(n) = 19^(5*n + 4).
Original entry on oeis.org
130321, 322687697779, 799006685782884121, 1978419655660313589123979, 4898762930960846817716295277921, 12129821994589221844500501021364910179, 30034640110980377619945846078500632729311721, 74368742344158402044370289529129338200416023056379
Offset: 0
A086874
Seventh power of odd primes.
Original entry on oeis.org
2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003
Cf.
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A138130
Powers of 1729, the Hardy-Ramanujan number.
Original entry on oeis.org
1, 1729, 2989441, 5168743489, 8936757492481, 15451653704499649, 26715909255079893121, 46191807102033135206209, 79865634479415290771535361, 138087682014909037743984639169, 238753602203777726259349441123201, 412804978210331688702415183702014529
Offset: 0
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.
A159648
Numerator of Hermite(n, 10/19).
Original entry on oeis.org
1, 20, -322, -35320, -8948, 101825200, 2068806280, -399730640800, -18450359755120, 1939836986158400, 158687177411937760, -10831879491824892800, -1476931152842107545920, 64308780860328720300800, 15148651417782595832021120, -347060128580550788160064000
Offset: 0
Numerator of 1, 20/19, -322/361, -35320/6859, -8948/130321, 101825200/2476099, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(20/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
A159648 := proc(n)
orthopoly[H](n,10/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n,10/19],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 10/19], {n,0,50}] (* G. C. Greubel, Jul 10 2018 *)
-
a(n)=numerator(polhermite(n,10/19)) \\ Charles R Greathouse IV, Jan 29 2016
A159649
Numerator of Hermite(n, 11/19).
Original entry on oeis.org
1, 22, -238, -37004, -298580, 100298792, 3284447224, -362236528016, -24568799886448, 1551764588318560, 193786882605147424, -6940428910346759872, -1691744857677709558592, 22913489210334717241984, 16382813996790345696268160, 128812358991324283435925248
Offset: 0
Numerator of 1, 22/19, -238/361, -37004/6859, -298580/130321, 100298792/2476099, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(22/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
A159649 := proc(n)
orthopoly[H](n,11/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n, 11/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 11/19], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n,11/19)) \\ Charles R Greathouse IV, Jan 29 2016
A159650
Numerator of Hermite(n, 12/19).
Original entry on oeis.org
1, 24, -146, -38160, -599604, 95815584, 4464144456, -307933642944, -29952193511280, 1059772077373824, 220063883293269216, -2370021199600548096, -1804627869905557267776, -22777205204394225722880, 16391584262028099097996416, 623630012494691211958785024
Offset: 0
Numerator of 1, 24/19, -146/361, -38160/6859, -599604/130321, 95815584/2476099, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(24/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
A159650 := proc(n)
orthopoly[H](n,12/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n, 12/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 12/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n,12/19)) \\ Charles R Greathouse IV, Jan 29 2016
A159651
Numerator of Hermite(n, 13/19).
Original entry on oeis.org
1, 26, -46, -38740, -907604, 88283416, 5571819256, -237576457456, -34336962413680, 479480595510176, 235588077247357216, 2663440108847816896, -1801791066668467770176, -69922612836437647611520, 15093623018002859652972416, 1099211969018786093034526976
Offset: 0
Numerator of 1, 26/19, -46/361, -38740/6859, -907604/130321, 88283416/2476099,..
-
[Numerator((&+[(-1)^k*Factorial(n)*(26/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
A159651 := proc(n)
orthopoly[H](n,13/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n, 13/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 13/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n,13/19)) \\ Charles R Greathouse IV, Jan 29 2016
A159652
Numerator of Hermite(n, 14/19).
Original entry on oeis.org
1, 28, 62, -38696, -1217780, 77656208, 6570559624, -152431023584, -37475677000048, -168877363780160, 238788382960467424, 7905369289385843072, -1675106997369228675392, -115395115449577347286784, 12491491044719414623199360, 1516175576216471435824394752
Offset: 0
Numerator of 1, 28/19, 62/361, -38696/6859, -1217780/130321, 77656208/2476099, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(28/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
A159652 := proc(n)
orthopoly[H](n,14/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n, 14/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 14/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n,14/19)) \\ Charles R Greathouse IV, Jan 29 2016
Comments