A180007 Number of Goldbach partitions of 6^n.
1, 4, 13, 49, 161, 656, 2751, 12505, 58482, 280348, 1374563, 6864809
Offset: 1
Keywords
Examples
a(1) = 1 because 6^1 = 6 = 3+3. a(2) = 4 because 6^2 = 36 = 5+31 = 7+29 = 13+23 = 17+19. a(3) = 13 because 6^3 = 216 = 5+211 = 17+199 = 19+197 = 23+193 = 37+179 = 43+173 = 53+163 = 59+157 = 67+149 = 79+137 = 89+127 = 103+113 = 107+109.
Links
- Manfred Scheucher, Sage Script
Programs
-
Maple
A061358 := proc(n) local a,p ; a := 0 ; p := nextprime(floor((n-1)/2)) ; while p <= n do if isprime(n-p) then a := a+1 ; end if; p := nextprime(p) ; end do ; return a; end proc: A180007 := proc(n) A061358(6^n) ; end proc: for n from 1 do printf("%d,\n",A180007(n)) ; end do: # R. J. Mathar, Aug 07 2010
-
Mathematica
Table[Count[Sort@ IntegerPartitions[6^n, {2}], {u_, v_} /; And[PrimeQ@ u, u != 2, PrimeQ@ v]], {n, 6}] (* Michael De Vlieger, Jun 02 2015 *)
-
PARI
a(n)=my(t=6^n,s); forprime(p=2,t\2, if(isprime(t-p), s++)); s \\ Charles R Greathouse IV, Jun 02 2015
Extensions
a(5) corrected, 4 terms added by R. J. Mathar, Aug 07 2010
a(10)-a(12) from Manfred Scheucher, Jun 01 2015
Comments