A245731
Number of connected labeled transitive relations on an n-set.
Original entry on oeis.org
1, 2, 9, 109, 2647, 110481, 7291543, 726434549, 106312974249, 22465350835849, 6771847676632679, 2883916106465622053, 1720792953946798909927, 1427968172285571102335605, 1637002867699829205840095585, 2577011453377960519672777065693, 5541005747990556022043234479371823, 16195114271558690956785525865003941945, 64068293759315414337050896928055465961863
Offset: 0
a(2) = 9. There are 13 transitive relations on the set {1,2}. Four of these are not connected: {}, {(1,1)}, {(2,2)}, {(1,1),(2,2)}. 13-4=9.
A245767
Triangular array read by rows: T(n,k) is the number of transitive relations on {1,2,...,n} that have exactly k reflexive points, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 6, 4, 19, 57, 66, 29, 219, 876, 1428, 1116, 355, 4231, 21155, 44500, 49070, 28405, 6942, 130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527, 6129859, 42909013, 131457522, 228345565, 242894155, 158322528, 58628647, 9535241
Offset: 0
T(2,1) = 6 because we have: {(1,1)}, {(2,2)}, {(1,1),(1,2)}, {(1,1),(2,1)}, {(2,2),(1,2)}, {(2,2),(2,1)}.
Triangle T(n,k) begins:
1;
1, 1;
3, 6, 4;
19, 57, 66, 29;
219, 876, 1428, 1116, 355;
4231, 21155, 44500, 49070, 28405, 6942;
130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n+1]] x^n/n!, {n, 0, lg-1}];
CoefficientList[#, y]& /@ (CoefficientList[A[x + Exp[y*x]-1] + O[x]^lg, x]* Range[0, lg-1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A247231
Triangular array read by rows: T(n,k) is the number of ways to partition an n-set into exactly k blocks and then partially order the blocks, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 3, 1, 9, 19, 1, 21, 114, 219, 1, 45, 475, 2190, 4231, 1, 93, 1710, 14235, 63465, 130023, 1, 189, 5719, 76650, 592340, 2730483, 6129859, 1, 381, 18354, 372519, 4442550, 34586118, 171636052, 431723379, 1, 765, 57475, 1701630, 29409681, 344040858, 2831994858, 15542041644, 44511042511
Offset: 1
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 19;
1, 21, 114, 219;
1, 45, 475, 2190, 4231;
1, 93, 1710, 14235, 63465, 130023;
1, 189, 5719, 76650, 592340, 2730483, 6129859;
...
Leading diagonal gives
A001035, n >= 1.
Apparently column 2 gives the terms > 1 of
A068156.
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[y*(Exp[x] - 1)] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A280192
Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 1, 9, 0, 19, 10, 12, 114, 0, 219, 31, 300, 190, 2190, 0, 4231, 361, 1158, 10140, 4380, 63465, 0, 130023, 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859, 32663, 192496, 1930852, 2381624, 27601000, 7281288, 171636052, 0, 431723379
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 3;
1, 9, 0, 19;
10, 12, 114, 0, 219;
31, 300, 190, 2190, 0, 4231;
361, 1158, 10140, 4380, 63465, 0, 130023;
2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A327016
BII-numbers of finite T_0 topologies without their empty set.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1
The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
87: {{1},{2},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
BII-numbers of topologies without their empty set are
A326876.
BII-numbers of T_0 set-systems are
A326947.
Cf.
A001930,
A048793,
A306445,
A316978,
A319564,
A326031,
A326872,
A326875,
A326939,
A326941,
A326959.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
A334253
Number of strict closure operators on a set of n elements which satisfy the T_0 separation axiom.
Original entry on oeis.org
1, 1, 3, 35, 2039, 1352390, 75945052607, 14087646108883940225
Offset: 0
The a(0) = 1 through a(2) = 3 set-systems of closed sets:
{{}} {{1},{}} {{1,2},{1},{}}
{{1,2},{2},{}}
{{1,2},{1},{2},{}}
- R. S. R. Myers, J. Adámek, S. Milius, and H. Urbat, Coalgebraic constructions of canonical nondeterministic automata, Theoretical Computer Science, 604 (2015), 81-101.
- B. Venkateswarlu and U. M. Swamy, T_0-Closure Operators and Pre-Orders, Lobachevskii Journal of Mathematics, 39 (2018), 1446-1452.
The number of all strict closure operators is given in
A102894.
For all T0 closure operators, see
A334252.
For strict T1 closure operators, see
A334255.
A strict closure operator which preserves unions is called topological, see
A001035.
A352761
Number of partial order relations on [n] such that 1 and 2 are in the same connected component.
Original entry on oeis.org
2, 14, 176, 3644, 117860, 5755964, 414823916, 43390462724, 6502296995300, 1380924739533644, 411744185101611356, 170949139294419110804, 98118349844314838731220, 77360523694460582654188124, 83319557470828626639253920716, 121980734453060653381753104078884, 241689591664023311258411470178766020
Offset: 2
-
nn = 16; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
Range[0, nn]! CoefficientList[ Series[D[D[Log[A[x]], x], x] A[x], {x, 0, nn}], x]
A354615
Triangular array read by rows: T(n,k) is the number of labeled posets on [n] that are composed of exactly k irreducible posets, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 7, 6, 6, 0, 97, 62, 36, 24, 0, 2251, 1110, 510, 240, 120, 0, 80821, 30902, 11340, 4440, 1800, 720, 0, 4305127, 1273566, 369726, 119280, 42000, 15120, 5040, 0, 332273257, 75831422, 17192196, 4476024, 1335600, 433440, 141120, 40320
Offset: 0
1;
0, 1;
0, 1, 2;
0, 7, 6, 6;
0, 97, 62, 36, 24;
0, 2251, 1110, 510, 240, 120;
...
-
nn = 9; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
"Table"], {, }][[All, 2]]* Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]]; Table[Take[(Range[0, nn]!* CoefficientList[ Series[1/(1 - y (1 - 1/A[x])), {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}]
A369776
Triangular array read by rows. T(n,k) is the number of inequivalent (as defined below) transitive binary relations R on [n] such that |domain(R intersect R^(-1))| = k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 2, 4, 19, 9, 12, 29, 219, 76, 72, 116, 355, 4231, 1095, 760, 870, 1775, 6942, 130023, 25386, 13140, 11020, 15975, 41652, 209527, 6129859, 910161, 355404, 222285, 236075, 437346, 1466689, 9535241, 431723379, 49038872, 14562576, 6871144, 5442150, 7386288, 17600268, 76281928, 642779354
Offset: 0
Triangle begins
1;
1, 1;
3, 2, 4;
19, 9, 12, 29;
219, 76, 72, 116, 355;
4231, 1095, 760, 870, 1775, 6942;
...
-
nn = 8; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]] // Grid
A369778
Number of inequivalent (as defined below) transitive binary relations on [n].
Original entry on oeis.org
1, 2, 9, 69, 838, 15673, 446723, 19293060, 1251685959, 120386313553, 16900121126060, 3411142115103803, 977085613480027515, 392874276568326733742, 219743920204264577507581, 169664195991510052549565897, 179646979835553234783655867894, 259379781267410563698300438118605, 508142540645401577520522108019282903
Offset: 0
-
nn = 16; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ x] - 1]*p[ x], {x, 0, nn}], x]
Comments