A334255 Number of strict closure operators on a set of n elements which satisfy the T_1 separation axiom.
1, 1, 1, 8, 545, 702525, 66960965307
Offset: 0
Examples
The a(3) = 8 set-systems of closed sets: {{1,2,3},{1},{2},{3},{}} {{1,2,3},{1,2},{1},{2},{3},{}} {{1,2,3},{1,3},{1},{2},{3},{}} {{1,2,3},{2,3},{1},{2},{3},{}} {{1,2,3},{1,2},{1,3},{1},{2},{3},{}} {{1,2,3},{1,2},{2,3},{1},{2},{3},{}} {{1,2,3},{1,3},{2,3},{1},{2},{3},{}} {{1,2,3},{1,2},{1,3},{2,3},{1},{2},{3},{}}
Links
- Dmitry I. Ignatov, Supporting iPython code for counting closure systems w.r.t. the T_1 separation axiom, Github repository
- Dmitry I. Ignatov, Supporting iPython notebook
- Eric Weisstein's World of Mathematics, Separation Axioms
- Wikipedia, Separation Axiom
Crossrefs
Programs
-
Mathematica
Table[Length[ Select[Subsets[Subsets[Range[n]]], And[MemberQ[#, {}], MemberQ[#, Range[n]], SubsetQ[#, Intersection @@@ Tuples[#, 2]], SubsetQ[#, Map[{#} &, Range[n]]]] &]], {n, 0, 4}] (* Tian Vlasic, Jul 29 2022 *)
Extensions
a(6) from Dmitry I. Ignatov, Jul 03 2022
Comments