cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A369799 Number of binary relations R on [n] such that q(R) is a quasi-order and s(R) is a strict partial order (where q(R) and s(R) are defined below).

Original entry on oeis.org

1, 2, 13, 237, 11590, 1431913, 424559959, 292150780260, 456213083587511, 1589279411184268465, 12188163803127032036308, 203538148644721100472292979, 7336995548182992341725851094195, 566597426371900580541745092349604750, 93154354372753215966288131247384428212545, 32423220989898980232206367503220063835343283713
Offset: 0

Views

Author

Geoffrey Critzer, Feb 01 2024

Keywords

Comments

For a relation R on [n], let E = domain(R intersect R^(-1)) and let F = [n]\E. Then q(R) := R intersect E X E and let s(R) := R intersect F X F.

Crossrefs

Programs

  • Mathematica
    nn = 18; posets =Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
       Length@# == 2 &][[All, 2]]; p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; Map[Total, (Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[
          Series[ p[Exp[ y  x] - 1]*p[ x], {x, 0, nn}], {x, y}]])*
      Table[Table[3^(k (n - k)), {k, 0, n}], {n, 0, nn}]]

Formula

a(n) = Sum_{k=0..n} A369776(n,k) * 3^(k*(n-k)).

A046906 Number of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 24, 1080, 52440, 3281880, 277953144, 32418855000, 5239070305080, 1173944480658840, 363936227764858584, 155521768202208047640, 91218870039317505477720, 73113879800794757415243480, 79743817918540500914682249144, 117883366412734188786535902826200, 235329353612778837110901775412557560
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A003431 gives isomorphism classes of these posets.

Programs

  • Mathematica
    nn = 18; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[ Series[(1 + Log[A[x]]) - A[ x] (1 - 1/A[x])^2 , {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2022 *)

Formula

From Geoffrey Critzer, Jul 09 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)(1-1/A(x))^2 where A(x) is the e.g.f. for A001035.
a(n) = A001927(n) - Sum_{k>=2} A354615(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 09 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022

A066302 Reduced partially ordered sets (posets) with n labeled elements.

Original entry on oeis.org

1, 1, 1, 7, 75, 1531, 50673, 2613703, 202180723, 22853355895, 3701983130913, 846741042881779, 270316009546766571, 119343586350194910211, 72325998629777739416209, 59798727157327673157936319
Offset: 0

Views

Author

Christian G. Bower, Dec 12 2001

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 57 (1.4.70).

Formula

E.g.f.: A(x)=B(x/(1+x)) where B(x) is e.g.f. of A001035.
E.g.f.: A(x)=exp(B(x)) where B(x) is e.g.f. of A066303.

A173311 a(n) is the number of regular D classes in the semigroup of all binary relations on [n].

Original entry on oeis.org

1, 2, 4, 9, 25, 88, 406, 2451, 19450, 202681, 2769965, 49519392, 1154411138, 34978238590, 1373171398361, 69648249299517, 4552778914494604
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Previous name was: Partial sums of A000112.

Crossrefs

Cf. A000112, A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057, A079263, A079265, A007903.

Programs

Formula

a(n) = Sum_{i=0..n} A000112(i).

Extensions

New name from Geoffrey Critzer, May 22 2022

A213430 The number of n X n upper triangular (0,1)-matrices M with all diagonal entries 1 such that M = f(M^2) and sum(row 1) >= sum(row 2) >= ... >= sum(row n-1) >= sum(row n) = 1 and f maps any nonzero entry to 1.

Original entry on oeis.org

1, 2, 6, 26, 159, 1347, 15593, 244173, 5131436
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

Comments

A006455 is equivalent to this sequence without the nonincreasing condition on the row sums. - Petros Hadjicostas, Jul 20 2024

References

  • Collected papers of Professor Hansraj Gupta. Edited by R. J. Hans-Gill and Madhu Raka. Ramanujan Mathematical Society Collected Works Series, 3. See pp. 554-564.
  • Hansraj Gupta, Number of topologies in a finite set, Research Bulletin of the Panjab University, Vol. 19 (1968), p. 240. MR0268836.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Extensions

a(7) and new name from Petros Hadjicostas, Jul 20 2024
a(8)-a(9) from Sean A. Irvine, Jul 20 2024

A247232 Triangular array read by rows: T(n,k) is the number of pre-orders on an n-set with exactly k connected components in its digraph representation, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 3, 1, 19, 9, 1, 233, 103, 18, 1, 4851, 1735, 325, 30, 1, 158175, 43201, 7320, 785, 45, 1, 7724333, 1567783, 218491, 22960, 1610, 63, 1, 550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1, 56536880923, 6187176225, 496368181, 37205658, 2518131, 135198, 4998, 108, 1
Offset: 1

Views

Author

Geoffrey Critzer, Nov 27 2014

Keywords

Comments

The Bell transform of A001929(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			1;
3,         1;
19,        9,        1;
233,       103,      18,      1;
4851,      1735,     325,     30,     1;
158175,    43201,    7320,    785,    45,    1;
7724333,   1567783,  218491,  22960,  1610,  63,   1;
550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1;
		

Crossrefs

Column 1 = A001929.
Row sums = A000798.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[Exp[x] - 1]^y + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    topo = oeis('A001929')  # Fetch the data via Internet.
    A001929List = topo.first_terms()
    A001929 = lambda n: A001929List[n]
    bell_matrix(lambda n: A001929(n+1), 10) # Peter Luschny, Jan 18 2016, updated Mar 25 2020

Formula

E.g.f.: A(exp(x)-1)^y where A(x) is the e.g.f. for A001035.

A265042 a(n) = the unique number k such that T(p + n) == k mod p for all primes p, where T(n) = A000798(n) = number of topologies on n points.

Original entry on oeis.org

2, 7, 51, 634, 12623
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2015

Keywords

Comments

From Altug Alkan, Dec 20 2015: (Start)
From the inequality in the formula section, since A000798(6) = 209527, we have 209527 < a(5) < 419054. The same inequality shows that a(17) has 36 digits (A000798 is currently known only for n <= 18).
If we want to analyze more deeply,
A000798(p + 5) == a(5) mod p for all primes p.
A000798(7) == a(5) mod 2, that is, 9535241 == a(5) mod 2. So a(5) mod 2 == 1.
A000798(8) == a(5) mod 3, that is, 642779354 == a(5) mod 3. So a(5) mod 3 == 2.
A000798(10) == a(5) mod 5, that is, 8977053873043 == a(5) mod 5. So a(5) mod 5 == 3.
A000798(12) == a(5) mod 7, that is, 519355571065774021 == a(5) mod 7. So a(5) mod 7 == 5.
A000798(16) == a(5) mod 11, that is, 93411113411710039565210494095 == a(5) mod 11. So a(5) mod 11 == 5.
A000798(18) == a(5) mod 13, that is, 261492535743634374805066126901117203 == a(5) mod 13. So a(5) mod 13 == 2.
In conclusion, a(5) is a number of the form 2*3*5*7*11*13*n - 2767, that is, 30030*n - 2767. Moreover we know that 209527 < a(5) < 419054. So a(5) is one of these numbers: 237473, 267503, 297533, 327563, 357593, 387623, 417653. If we take into consideration the first four inequalities, which are 4 < 7 < 8, 29 < 51 < 58, 355 < 634 < 710, 6942 < 12623 < 13884, then 387623 seems a strong candidate for a(5) because of relevant proportions in inequalities.
(End)

Examples

			From _Altug Alkan_, Dec 17 2015: (Start)
A000798(p^k) == k+1 mod p for all primes p. If k=1, A000798(p^1) == 2 mod p, that is, A000798(p) == 2 mod p. So a(0) = 2.
a(1) = 7 because A000798(p + 1) == 7 mod p for all primes p.
(End)
		

Crossrefs

Formula

A000798(n+1) < a(n) < 2*A000798(n+1), for n > 0. - Altug Alkan, Dec 17 2015

Extensions

a(0) = 2 prepended by Altug Alkan, Dec 17 2015

A281547 Total number of subsets of X that are both open and closed summed over all distinct topological spaces X that can be placed on an n-set.

Original entry on oeis.org

1, 2, 10, 82, 1038, 19754, 561778, 23890766, 1516425978, 142478603490, 19560464078774, 3868751287074546, 1088233853378616578, 430599111941369628326, 237480490462200909980594, 181131722604060126010422898, 189780362331001773747253412782, 271553393666987988551182068682458, 527932854364810523962111033565618786
Offset: 0

Views

Author

Geoffrey Critzer, Jan 23 2017

Keywords

Examples

			a(2) = 10.  Let X = {a,b}.  There are four distinct topologies (A000798) that can be placed on X: {{},X}  {{},{a},X}  {{}, {b},X}  {{},{a},{b},X}.  These topologies have 2 + 2 + 2 + 4 sets respectively that are both open and closed.
		

Crossrefs

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    CoefficientList[A[Exp[x] - 1]^2 + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(exp(x) - 1)^2 where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=1..n} A247232(n,k)*2^k.

A343882 Triangular array read by rows: T(n,k) is the number of transitive relations on n labeled nodes with exactly k connected components.

Original entry on oeis.org

1, 0, 2, 0, 9, 4, 0, 109, 54, 8, 0, 2647, 1115, 216, 16, 0, 110481, 36280, 6790, 720, 32, 0, 7291543, 1801927, 287475, 32020, 2160, 64, 0, 726434549, 133060816, 16873619, 1718290, 129080, 6048, 128, 0, 106312974249, 14380028959, 1387285830, 118346473, 8584240, 467488, 16128, 256
Offset: 0

Views

Author

Geoffrey Critzer, May 02 2021

Keywords

Comments

T(n,n) = 2^n since each node is reflexive or not.

Examples

			Triangular array T(n,k) begins:
  1;
  0,      2;
  0,      9,     4;
  0,    109,    54,    8;
  0,   2647,  1115,  216,  16;
  0, 110481, 36280, 6790, 720, 32;
  ...
		

Crossrefs

Cf. A245731 (column k=1), A006905 (row sums), A001035.

Programs

  • Mathematica
    A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]* Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]]; nn = 10;
    Range[0, nn]! CoefficientList[ Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x,y}] // Grid;Table[Take[(Range[0, nn]! CoefficientList[Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x, y}])[[i, All]], i], {i, 1, nn}] // Grid
      (* Import function in code after Jean-François Alcover *)

Formula

E.g.f.: A(x + exp(x) -1)^y where A(x) is the e.g.f. for A001035.

A352399 Triangular array read by rows: T(n,k) is the number of partial order relations on [n] that have exactly k components, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 12, 6, 1, 0, 146, 60, 12, 1, 0, 3060, 970, 180, 20, 1, 0, 101642, 24180, 3750, 420, 30, 1, 0, 5106612, 901334, 110040, 10990, 840, 42, 1, 0, 377403266, 49347228, 4567976, 376320, 27020, 1512, 56, 1, 0, 40299722580, 3923052354, 269812620, 17322648, 1071000, 58716, 2520, 72, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jul 05 2022

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    2,   1;
  0,   12,   6,   1;
  0,  146,  60,  12,  1;
  0, 3060, 970, 180, 20, 1;
  ...
		

Crossrefs

Cf. A001927 (column 1), A001035 (row sums), A046908.

Programs

  • Mathematica
    nn = 8; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
          "Table"], {, }][[All, 2]]* Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Table[Take[(Range[0, nn]! CoefficientList[Series[A[x]^y, {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid

Formula

E.g.f.: A(x)^y where A(x) is the e.g.f. for A001035.
Previous Showing 41-50 of 65 results. Next