cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 721 results. Next

A211892 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n^2) * x^n/n ), where Jacobsthal(n) = A001045(n).

Original entry on oeis.org

1, 3, 12, 198, 16962, 6762210, 11473594848, 80455865485692, 2306084412391039038, 268657100633050977422322, 126765866001055606588876061400, 241678197713843578271875740922972788, 1858396158245858742065123341776166504084452
Offset: 0

Views

Author

Paul D. Hanna, Apr 24 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 12*x^2 + 198*x^3 + 16962*x^4 + 6762210*x^5 +...
such that
log(A(x))/3 = x + 5*x^2/2 + 171*x^3/3 + 21845*x^4/4 + 11184811*x^5/5 + 22906492245*x^6/6 + 187649984473771*x^7/7 +...+ Jacobsthal(n^2)*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,...].
		

Crossrefs

Cf. A231279 (Jacobsthal(n^2)).

Programs

  • PARI
    {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k^2)*x^k/k)+x*O(x^n)), n)}
    for(n=0, 16, print1(a(n), ", "))

Formula

G.f.: (1+x) * exp( Sum_{n>=1} 2^(n^2) * x^n/n ).
a(n) = A155200(n) + A155200(n-1).

A211894 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^2 * x^n/n ), where Jacobsthal(n) = A001045(n).

Original entry on oeis.org

1, 3, 6, 18, 57, 195, 684, 2460, 8970, 33102, 123204, 461868, 1741410, 6597750, 25099584, 95822928, 366943881, 1408947675, 5422742910, 20915079258, 80820382425, 312839889219, 1212812010804, 4708415402772, 18302630040504, 71230126892088, 277514015733168
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 6*x^2 + 18*x^3 + 57*x^4 + 195*x^5 + 684*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^2*x^3/3 + 5^2*x^4/4 + 11^2*x^5/5 + 21^2*x^6/6 + 43^2*x^7/7 +...+ Jacobsthal(n)^2*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
		

Crossrefs

Cf. A211893, A211895, A211896, A054888, A207969, A001045 (Jacobsthal).

Programs

  • Mathematica
    CoefficientList[Series[(1+2*x)^(2/3) / ((1-x)*(1-4*x))^(1/3), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
  • PARI
    {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^2*x^k/k)+x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(((1+2*x)^2/((1-x)*(1-4*x) +x*O(x^n)))^(1/3),n)}

Formula

G.f.: (1+2*x)^(2/3) / ((1-x)*(1-4*x))^(1/3).
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^2 / 3 * x^n/n ).
a(n) ~ 3^(1/3) * 2^(2*n) / (n^(2/3) * Gamma(1/3)). - Vaclav Kotesovec, Oct 18 2020

A211896 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).

Original entry on oeis.org

1, 3, 6, 90, 723, 10689, 130428, 1862580, 25594611, 368313993, 5289203262, 77279744418, 1134460916361, 16798605635235, 249994099311288, 3740771822960664, 56208829313956998, 847934859174601650, 12834366187138678836, 194855374723972622988, 2966358133685609559042
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
		

Crossrefs

Cf. A211893, A211894, A211895, A207969, A001045 (Jacobsthal).

Programs

  • PARI
    {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27),n)}

Formula

G.f.: ( (1+2*x)^4*(1+8*x)^4 / ((1-x)*(1-4*x)^6*(1-16*x)) )^(1/27).
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^4 / 27 * x^n/n ).
a(n) ~ 3^(5/27) * 2^(4*n) / (5^(1/27) * Gamma(1/27) * n^(26/27)). - Vaclav Kotesovec, Oct 18 2020

A286567 Smallest prime factor of the n-th Jacobsthal number: a(n) = A020639(A001045(n)), with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 3, 5, 11, 3, 43, 5, 3, 11, 683, 3, 2731, 43, 3, 5, 43691, 3, 174763, 5, 3, 23, 2796203, 3, 11, 2731, 3, 5, 59, 3, 715827883, 5, 3, 43691, 11, 3, 1777, 174763, 3, 5, 83, 3, 2932031007403, 5, 3, 47, 283, 3, 43, 11, 3, 5, 107, 3, 11, 5, 3, 59, 2833, 3, 768614336404564651, 715827883, 3, 5, 11, 3, 7327657, 5, 3, 11, 56409643, 3, 1753, 223, 3, 5, 43, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A020639(A001045(n)).

A366769 Number of distinct prime divisors of A001045(n) (Jacobsthal numbers).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 3, 1, 6, 3, 2, 3, 5, 2, 6, 1, 4, 4, 2, 4, 8, 2, 2, 3, 6, 2, 6, 1, 6, 5, 3, 2, 9, 2, 6, 5, 6, 2, 6, 4, 7, 4, 5, 3, 11, 1, 2, 5, 6, 5, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 5, 7, 1, 8, 6, 4, 5, 12, 3, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 21 2023

Keywords

Examples

			a(12) = 4 because Jacobsthal(12) = 1365 has prime factors {3, 5, 7, 13}.
		

Crossrefs

Formula

a(n) = omega(Jacobsthal(n)) = A001221(A001045(n)).

A366770 Number of prime factors of A001045(n) (Jacobsthal numbers) (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 3, 3, 1, 5, 1, 5, 3, 3, 1, 6, 3, 2, 5, 5, 2, 6, 1, 4, 4, 2, 4, 9, 2, 2, 3, 7, 2, 7, 1, 6, 6, 3, 2, 9, 2, 6, 5, 6, 2, 8, 5, 7, 4, 5, 3, 12, 1, 2, 6, 6, 5, 8, 2, 6, 4, 8, 2, 13, 2, 4, 6, 6, 5, 7, 1, 9, 9, 4, 5, 13, 3, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 21 2023

Keywords

Examples

			a(9) = 3 because Jacobsthal(9) = 171 = 3^2 * 19.
		

Crossrefs

Formula

a(n) = bigomega(Jacobsthal(n)) = A001222(A001045(n)).

A073373 Third convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 4, 18, 60, 195, 576, 1644, 4488, 11925, 30860, 78278, 195012, 478599, 1159080, 2774880, 6575280, 15439065, 35955540, 83118970, 190862860, 435601611, 988620624, 2232236628, 5016441240, 11224087965
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Fourth (m=3) column of triangle A073370.

Programs

  • Magma
    [(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)): n in [0..40]]; // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)), {n,0,40}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073373(n): return (1/4374)*(2^(n+4)*(226+267*n+90*n^2+9*n^3) +(-1)^n*(758 +555*n+126*n^2+9*n^3))
    [A073373(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k) * c(n-k), with b(k) = A001045(k+1) and c(k) = A073372(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, 3) * binomial(n-k, k) * 2^k.
a(n) = ((350+177*n+21*n^2)*(n+1)*U(n+1) + 2*(277+132*n+15*n^2)*(n+2)*U(n))/ (2*9^3) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^4 = 1/ ( (1+x)^4*(1-2*x)^4 ).
E.g.f.: (1/4374)*(32*(113 + 366*x + 234*x^2 + 36*x^3)*exp(2*x) - (-758 + 690*x - 153*x^2 + 9*x^3)*exp(-x)). - G. C. Greubel, Sep 29 2022

A073374 Fourth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 5, 25, 95, 340, 1106, 3430, 10130, 28915, 80035, 216143, 571225, 1482110, 3783640, 9522740, 23665300, 58149845, 141435985, 340854645, 814589475, 1931900376, 4549699950, 10645737330, 24761578470
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Fifth (m=4) column of triangle A073370.

Programs

  • Magma
    [(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464: n in [0..40]]; // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464, {n,0,40}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073374(n): return (2^(n+5)*(4208+5790*n+2565*n^2+450*n^3+27*n^4) + (-1)^n*(22808+18510*n+ 5265*n^2+630*n^3+27*n^4))/157464
    [A073374(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073373(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, 4) * binomial(n-k, k) * 2^k.
a(n) = (5*(2968 +1974*n +411*n^2 +27*n^3)*(n+1)*U(n+1) + 2*(9412 +6099*n +1248*n^2 +81*n^3)*(n+2)*U(n))/(4!*3^7) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^5 = 1/((1+x)*(1-2*x))^5.
E.g.f.: (1/157464)*(512*(263 + 1104*x + 1026*x^2 + 306*x^3 + 27*x^4)*exp(2*x) + (22808 - 24432*x + 7344*x^2 - 792*x^3 + 27*x^4)*exp(-x)). - G. C. Greubel, Sep 29 2022

A073375 Fifth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 6, 33, 140, 546, 1932, 6454, 20448, 62271, 183202, 523887, 1461516, 3991400, 10698072, 28203612, 73265056, 187822125, 475788222, 1192287117, 2958453036, 7274927646, 17741533668, 42937126290
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Sixth (m=5) column of triangle A073370.

Programs

  • Magma
    [(n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320: n in [0..40]]; // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320, {n,0,40}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073375(n): return (n+3)*(n+9)*(2^(6+n)*(9*n^3 +117*n^2 +438*n +400) +(-1)^n*(9*n^3 +207*n^2 + 1518*n +3560))/787320
    [A073375(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073374(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+5, 5) * binomial(n-k, k) * 2^k.
a(n) = (n+3)*(n+9)*((3080 +1086*n +93*n^2)*(n+1)*U(n+1) + 2*(1660 +591*n +51*n^2) *(n+2)*U(n))/(5!*3^7) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^6 = 1/((1+x)*(1-2*x))^6.
E.g.f.: (1/787320)*(1024*(675 +3470*x +4195*x^2 +1830*x^3 +315*x^4 +18*x^5 )*exp(2*x) + (96120 -115640*x +42440*x^2 -6360*x^3 +405*x^4 -9*x^5)*exp(-x)). - G. C. Greubel, Sep 29 2022

A073376 Sixth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 7, 42, 196, 826, 3150, 11256, 38004, 122787, 381997, 1151458, 3376968, 9671284, 27123292, 74669472, 202181112, 539342181, 1419492627, 3690464106, 9487902396, 24143758254, 60861096714
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Seventh (m=6) column of triangle A073370.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^7 )); // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(2^(n+7)*(297760 +500640*n +302778*n^2 +87255*n^3 +12915*n^4 +945*n^5 +27*n^6) +(-1)^n*(4402000 +4038132*n +1453788*n^2 +265545*n^3 +26145*n^4 +1323*n^5 +27*n^6))/(6!*3^10), {n,0,40}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073376(n): return (2^(n+7)*(297760 +500640*n +302778*n^2 +87255*n^3 +12915*n^4 +945*n^5 +27*n^6) +(-1)^n*(4402000 +4038132*n +1453788*n^2 +265545*n^3 +26145*n^4 +1323*n^5 +27*n^6))/(factorial(6)*3^10)
    [A073376(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k) * c(n-k), with b(k) = A001045(k+1) and c(k) = A073375(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+6, 6) * binomial(n-k, k) * 2^k.
a(n) = ((1+n)*(4884880 +4449396*n +1525272*n^2 +247653*n^3 +19152*n^4 +567*n^5)* U(n+1) + 2*(2+n)*(2321720 +2182242*n +765993*n^2 +126621*n^3 +9927*n^4 +297*n^5 )*U(n))/(6!*3^9) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^7 = 1/((1+x)*(1-2*x))^7.
E.g.f.: (1/(6!*3^10))*( 4096*(9305 +56535*x +83745*x^2 +47700*x^3 +12060*x^4 +1350*x^5 +54*x^6)*exp(2*x) + (4402000 -5784960*x +2454120*x^2 -457920*x^3 +41130*x^4 -1728*x^5 +27*x^6)*exp(-x)). - G. C. Greubel, Sep 29 2022
Previous Showing 31-40 of 721 results. Next