A005343
a(n) = solution to the postage stamp problem with n denominations and 8 stamps.
Original entry on oeis.org
8, 28, 89, 234, 512, 1045, 2001, 3485
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
- Erich Friedman, Postage stamp problem
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Postage stamp sequences:
A001208,
A001209,
A001210,
A001211,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A014616,
A053346,
A053348,
A075060,
A084192,
A084193.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(8) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
A005344
a(n) = solution to the postage stamp problem with n denominations and 9 stamps.
Original entry on oeis.org
9, 34, 112, 326, 797, 1617, 3191
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- Erich Friedman, Postage stamp problem
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
- R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Postage stamp sequences:
A001208,
A001209,
A001210,
A001211,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A014616,
A053346,
A053348,
A075060,
A084192,
A084193.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
A053346
a(n) = solution to the postage stamp problem with 7 denominations and n stamps.
Original entry on oeis.org
7, 26, 70, 162, 336, 638, 1137, 2001, 3191, 5047, 7820, 11568, 17178
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_kComp. J. 36(2) (1993) 117-126
- M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Eric Weisstein's World of Mathematics, Postage stamp problem
Postage stamp sequences:
A001208,
A001209,
A001210,
A001211,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A014616,
A053346,
A053348,
A075060,
A084192,
A084193.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(10)-a(13) from Challis and Robinson by
Robert Price, Jul 19 2013
A053348
a(n) = solution to the postage stamp problem with 8 denominations and n stamps.
Original entry on oeis.org
8, 32, 93, 228, 524, 1007, 1911, 3485
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_kComp. J. 36(2) (1993) 117-126
- M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Eric Weisstein's World of Mathematics, Postage stamp problem
Postage stamp sequences:
A001208,
A001209,
A001210,
A001211,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A014616,
A053346,
A053348,
A075060,
A084192,
A084193.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(7)-a(8) from Challis and Robinson by
Robert Price, Jul 19 2013
A075060
a(n) = solution to the postage stamp problem with n denominations and 10 stamps.
Original entry on oeis.org
10, 40, 146, 427, 1055, 2510, 5047
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Eric Weisstein's World of Mathematics, Postage stamp problem
Postage stamp sequences:
A001208,
A001209,
A001210,
A001211,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A014616,
A053346,
A053348,
A075060,
A084192,
A084193.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(7) from Challis and Robinson by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
A084192
Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 8, 7, 4, 5, 12, 15, 10, 5, 6, 16, 24, 26, 14, 6, 7, 20, 36, 44, 35, 18, 7, 8, 26, 52, 70, 71, 52, 23, 8, 9, 32, 70, 108, 126, 114, 69, 28, 9, 10, 40, 93, 162, 211, 216, 165, 89, 34, 10, 11, 46, 121, 228, 336, 388, 345, 234, 112, 40, 11, 12, 54, 154, 310, 524
Offset: 0
Array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
2, 4, 7, 10, 14, 18, 23, 28, 34, 40, ...
3, 8, 15, 26, 35, 52, 69, 89, 112, ...
4, 12, 24, 44, 71, 114, 165, 234, ...
5, 16, 36, 70, 126, 216, 345, ...
6, 20, 52, 108, 211, 388, ...
7, 26, 70, 162, 336, ...
8, 32, 93, 228, ...
9, 40, 121, ...
10, 46, ...
11, ...
...
A084193 gives transposed array. Rows and columns give rise to
A014616,
A001208,
A001209,
A001210,
A001211,
A053346,
A053348,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A075060.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 26 2003
A084193
Array read by antidiagonals: T(k,n) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 7, 8, 4, 5, 10, 15, 12, 5, 6, 14, 26, 24, 16, 6, 7, 18, 35, 44, 36, 20, 7, 8, 23, 52, 71, 70, 52, 26, 8, 9, 28, 69, 114, 126, 108, 70, 32, 9, 10, 34, 89, 165, 216, 211, 162, 93, 40, 10, 11, 40, 112, 234, 345, 388, 336, 228, 121, 46, 11, 12, 47, 146, 326, 512
Offset: 0
Array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
2, 4, 8, 12, 16, 20, 26, 32, 40, 46, ...
3, 7, 15, 24, 36, 52, 70, 93, 121, ...
4, 10, 26, 44, 70, 108, 162, 228, ...
5, 14, 35, 71, 126, 211, 336, ...
6, 18, 52, 114, 216, 388, ...
7, 23, 69, 165, 345, ...
8, 28, 89, 234, ...
9, 34, 112, ...
10, 40, ...
11, ...
...
A084192 gives transposed array. Rows and columns give rise to
A014616,
A001208,
A001209,
A001210,
A001211,
A053346,
A053348,
A001212,
A001213,
A001214,
A001215,
A001216,
A005342,
A005343,
A005344,
A075060.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 26 2003
A196416
Table read by antidiagonals: V(n,m) = solution to postage stamp problem with n stamps in set, m stamps on letter.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 8, 9, 5, 1, 1, 6, 11, 16, 13, 6, 1, 1, 7, 15, 27, 25, 17, 7, 1, 1, 8, 19, 36, 45, 37, 21, 8, 1, 1, 9, 24, 53, 72, 71, 53, 27, 9, 1, 1, 10, 29, 70, 115, 127, 109, 71, 33, 10, 1
Offset: 0
Array begins:
m\n 0 1 2 3 4 5 6 ...
---------------------
0...1 1 1 1 1 1 1 ...
1...1 2 3 4 5 6 7 ...
2...1 3 5 9 13 17 21 ...
3...1 4 8 16 25 37 53 ...
4...1 5 11 27 45 71 109 ...
5...1 6 15 36 72 127 212 ...
6...1 7 19 53 115 217 389 ...
...
A002437
a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
Original entry on oeis.org
1, 7, 305, 33367, 6815585, 2237423527, 1077270776465, 715153093789687, 626055764653322945, 698774745485355051847, 968553361387420436695025, 1632180870878422847476890007, 3286322019402928956112227932705, 7791592461957309952817483706344167, 21485762937086358457367440231243675985
Offset: 0
a(4) = A000364(4) * (3^(2*4+1)+1)/4 = 1385 * (3^9+1)/4 = 1385 * 4921 = 6815585.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
- L. B. W. Jolley, Summation of Series, Dover, 2nd ed. (1961)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, vol. 6, no. 1, #R21, (1999).
-
Q:=proc(n) option remember; if n=0 then RETURN(1); else RETURN(expand((u^2+1)*diff(Q(n-1),u)+u*Q(n-1))); fi; end;
[seq(subs(u=sqrt(3),Q(2*n)),n=0..25)];
-
Table[Abs[EulerE[2 n]] (3^(2 n + 1) + 1) / 4, {n, 0, 30}] (* Vincenzo Librandi, Feb 07 2017 *)
A012494
Expansion of e.g.f. arctan(sin(x)) (odd powers only).
Original entry on oeis.org
1, -3, 45, -1743, 125625, -14554683, 2473184805, -579439207623, 179018972217585, -70518070842040563, 34495620120141463965, -20515677772241956573503, 14578232896601243652363945, -12198268199871431840616166443, 11871344562637111570703016357525
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
-
a:= n-> (t-> t!*coeff(series(arctan(sin(x)), x, t+1), x, t))(2*n+1):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 16 2018
-
Drop[ Range[0, 25]! CoefficientList[ Series[ ArcTan[ Sin[x]], {x, 0, 25}], x], {1, 25, 2}] (* Or *)
f[n_] := n!Sum[(1 + (-1)^(n - 2k + 1))2^(1 - 2k)Sum[(-1)^((n + 1)/2 - j)Binomial[2k - 1, j]((2j - 2k + 1)^n/n!)/(2k - 1), {j, 0, (2k - 1)/2}], {k, Ceiling[n/2]}]; Table[ f[n], {n, 1, 25, 2}] (* Robert G. Wilson v *)
-
a(n):=n!*sum((1+(-1)^(n-2*k+1))*2^(1-2*k)*sum((-1)^((n+1)/2-i)*binomial(2*k-1,i)*(2*i-2*k+1)^n/n!,i,0,(2*k-1)/2)/(2*k-1),k,1,ceiling((n)/2)); /* Vladimir Kruchinin, Feb 25 2011 */
-
a(n):=sum(sum((2*i-2*k-1)^(2*n+1)*binomial(2*k+1,i)*(-1)^(n-i+1),i,0,k)/(4^k*(2*k+1)),k,0,n); /* Vladimir Kruchinin, Feb 04 2012 */
Comments