cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A024206 Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2).

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 63, 71, 80, 89, 99, 109, 120, 131, 143, 155, 168, 181, 195, 209, 224, 239, 255, 271, 288, 305, 323, 341, 360, 379, 399, 419, 440, 461, 483, 505, 528, 551, 575, 599, 624, 649, 675, 701, 728, 755, 783, 811, 840
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of 2 X n binary matrices with no zero rows or columns, up to row and column permutation.
[ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 odd positive integers}.
First differences are 1, 2, 2, 3, 3, 4, 4, 5, 5, ... .
Let M_n denotes the n X n matrix m(i,j) = 1 if i =j; m(i,j) = 1 if (i+j) is odd; m(i,j) = 0 if i+j is even, then a(n) = -det M_(n+1) - Benoit Cloitre, Jun 19 2002
a(n) is the number of squares with corners on an n X n grid, distinct up to translation. See also A002415, A108279.
Starting (1, 3, 5, 8, 11, ...), = row sums of triangle A135841. - Gary W. Adamson, Dec 01 2007
Number of solutions to x+y >= n-1 in integers x,y with 1 <= x <= y <= n-1. - Franz Vrabec, Feb 22 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-4)=-coeff(charpoly(A,x),x^2). - Milan Janjic, Jan 26 2010
Equals row sums of a triangle with alternate columns of (1,2,3,...) and (1,1,1,...). - Gary W. Adamson, May 21 2010
Conjecture: if a(n) = p#(primorial)-1 for some prime number p, then q=(n+1) is also a prime number where p#=floor(q^2/4). Tested up to n=10^100000 no counterexamples are found. It seems that the subsequence is very scattered. So far the triples (p,q,a(q-1)) are {(2,3,1), (3,5,5), (5,11,29), (7,29,209), (17,1429,510509)}. - David Morales Marciel, Oct 02 2015
Numbers of an Ulam spiral starting at 0 in which the shape of the spiral is exactly a rectangle. E.g., a(4)=5 the Ulam spiral is including at that moment only the elements 0,1,2,3,4,5 and the shape is a rectangle. The area is always a(n)+1. E.g., for a(4) the area of the rectangle is 2(rows) X 3(columns) = 6 = a(4) + 1. - David Morales Marciel, Apr 05 2016
Numbers of different quadratic forms (quadrics) in the real projective space P^n(R). - Serkan Sonel, Aug 26 2020
a(n+1) is the number of one-dimensional subspaces of (F_3)^n, counted up to coordinate permutation. E.g.: For n=4, there are five one-dimensional subspaces in (F_3)^3 up to coordinate permutation: [1 2 2] [0 2 2] [1 0 2] [0 0 2] [1 1 1]. This example suggests a bijection (which has to be adjusted for the all-ones matrix) with the binary matrices of the first comment. - Álvar Ibeas, Sep 21 2021

Examples

			There are five 2 X 3 binary matrices with no zero rows or columns up to row and column permutation:
   [1 0 0]  [1 0 0]  [1 1 0]  [1 1 0]  [1 1 1]
   [0 1 1]  [1 1 1]  [0 1 1]  [1 1 1]  [1 1 1].
		

References

  • O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig, 1982. See p. 59.

Crossrefs

Cf. A014616, A135841, A034856, A005744 (partial sums), A008619 (1st differences).
A row or column of the array A196416 (possibly with 1 subtracted from it).
Cf. A008619.
Second column of A232206.

Programs

  • GAP
    a:=[0,1,3,5];; for n in [5..65] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Oct 23 2018
    
  • Haskell
    a024206 n = (n - 1) * (n + 3) `div` 4
    a024206_list = scanl (+) 0 $ tail a008619_list
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [(2*n^2+4*n-7-(-1)^n)/8 : n in [1..100]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A024206:=n->(2*n^2+4*n-7-(-1)^n)/8: seq(A024206(n), n=1..100);
  • Mathematica
    f[x_, y_] := Floor[ Abs[ y/x - x/y]]; Table[ Floor[ f[2, n^2 + 2 n - 2] /2], {n, 57}] (* Robert G. Wilson v, Aug 11 2010 *)
    LinearRecurrence[{2,0,-2,1},{0,1,3,5},60] (* Harvey P. Dale, Jun 14 2013 *)
    Rest[CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x^2) (1 - x)^2), {x, 0, 70}], x]] (* Vincenzo Librandi, Oct 02 2015 *)
  • PARI
    a(n)=(n-1)*(n+3)\4 \\ Charles R Greathouse IV, Jun 26 2013
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(1+x-x^2)/ ((1-x^2)*(1-x)^2))) \\ Altug Alkan, Apr 05 2016
    
  • Python
    def A024206(n): return (n+1)**2//4 - 1 # Ya-Ping Lu, Jan 01 2024

Formula

G.f.: x^2*(1+x-x^2)/((1-x^2)*(1-x)^2) = x^2*(1+x-x^2) / ( (1+x)*(1-x)^3 ).
a(n+1) = A002623(n) - A002623(n-1) - 1.
a(n) = A002620(n+1) - 1 = A014616(n-2) + 1.
a(n+1) = A002620(n) + n, n >= 0. - Philippe Deléham, Feb 27 2004
a(0)=0, a(n) = floor(a(n-1) + sqrt(a(n-1)) + 1) for n > 0. - Gerald McGarvey, Jul 30 2004
a(n) = floor((n+1)^2/4) - 1. - Franz Vrabec, Feb 22 2008
a(n) = A005744(n-1) - A005744(n-2). - R. J. Mathar, Nov 04 2008
a(n) = a(n-1) + [side length of the least square > a(n-1) ], that is a(n) = a(n-1) + ceiling(sqrt(a(n-1) + 1)). - Ctibor O. Zizka, Oct 06 2009
For a(1)=0, a(2)=1, a(n) = 2*a(n-1) - a(n-2) + 1 if n is odd; a(n) = 2*a(n-1) - a(n-2) if n is even. - Vincenzo Librandi, Dec 23 2010
a(n) = A181971(n, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4); a(1)=0, a(2)=1, a(3)=3, a(4)=5. - Harvey P. Dale, Jun 14 2013
a(n) = floor( (n-1)*(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
a(n) = (2*n^2 + 4*n - 7 - (-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014
a(n) = a(-n-2) = n-1 + floor( (n-1)^2/4 ). - Bruno Berselli, Feb 03 2015
a(n) = (1/4)*(n+3)^2 - (1/8)*(1 + (-1)^n) - 1. - Serkan Sonel, Aug 26 2020
a(n) + a(n+1) = A034856(n). - R. J. Mathar, Mar 13 2021
a(2*n) = n^2 + n - 1, a(2*n+1) = n^2 + 2*n. - Greg Dresden and Zijie He, Jun 28 2022
Sum_{n>=2} 1/a(n) = 7/4 + tan(sqrt(5)*Pi/2)*Pi/sqrt(5). - Amiram Eldar, Dec 10 2022
E.g.f.: (4 + (x^2 + 3*x - 4)*cosh(x) + (x^2 + 3*x - 3)*sinh(x))/4. - Stefano Spezia, Aug 06 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jun 02 2000

A014616 a(n) = solution to the postage stamp problem with 2 denominations and n stamps.

Original entry on oeis.org

2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
a(n-2), for n >= 3, is the number of independent entries of a bisymmetric n X n matrix B_n with B_n[1,1] and B_n[n,n] fixed. Hence a(n-2) = A002620(n+1) - 2. See the Jul 07 2015 comment on A002620. For n=1 and n=2 this matrix B_n is fixed. Bisymmetric matrices B_n, with B_n[1,1] and B_n[n,n] fixed, are, for n >= 3, determined by giving the a(n-2) entries for [1,2], ...., [1,n-1]; [2,2], ..., [2,n-1]; [3,3], ..., [3,n-2]; ..., [ceiling(n/2),n-(ceiling(n/2)-1)]. - Wolfdieter Lang, Aug 16 2015
a(n-1) is the largest possible n-th element in an additive basis of order 2. - Charles R Greathouse IV, May 05 2020

Examples

			Bisymmetric matrix B_5, with B_5[1,1] and B_5[5,5] fixed, have a(3) free entries: for rows 1 and 2: each 3, row 3:  1, altogether 3 + 3 + 1 = 7 = a(5-2). Mark the corresponding matrix entries with x, and obtain a pattern symmetric around the central vertical. - _Wolfdieter Lang_, Aug 16 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section C12, pp. 185-190.

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Programs

Formula

a(n) = floor((n^2 + 6*n + 1)/4).
a(n) = A002620(n+3) - 2 = A024206(n+2) - 1 = (2*n*(n+6)-(-1)^n+1)/8.
G.f.: x*(-2 + x^2)/((1 + x)*(x - 1)^3). - R. J. Mathar, Jul 09 2011
a(n) = floor(A028884(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
a(n)+a(n+1) = A046691(n+1). - R. J. Mathar, Mar 13 2021
a(n) = 2*n + A002620(n-1). - Michael Chu, Apr 28 2022
a(n) = A004116(n) + 1. - Michael Chu, May 02 2022
E.g.f.: (x*(7 + x)*cosh(x) + (1 + 7*x + x^2)*sinh(x))/4. - Stefano Spezia, Nov 09 2022
Sum_{n>=1} 1/a(n) = 67/36 - cot(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Dec 10 2022

Extensions

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from John W. Layman, Apr 13 1999

A001212 a(n) = solution to the postage stamp problem with n denominations and 2 stamps.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 26, 32, 40, 46, 54, 64, 72, 80, 92, 104, 116, 128, 140, 152, 164, 180, 196, 212
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
a(20)=152: There is only one set of 20 denominations covering all sums through 152: {1, 3, 4, 5, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 71, 72, 73, 75, 76}. - Tim Peters (tim.one(AT)comcast.net), Oct 04 2006

References

  • Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 115 (Coins of the Realm), 1984.
  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A196094(n) - 1 and A234941(n+1)-2.
A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

Corrected a(17). Added a(18) and a(19) from Challis. - R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(20) from Tim Peters (tim.one(AT)comcast.net), Oct 04 2006
Added terms a(21) and a(22) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 19 2010
Added term a(23) from Challis and Robinson's July 2013 addendum, by Jukka Kohonen, Oct 25 2013
Added a(24) from Kohonen and Corander (2013). - N. J. A. Sloane, Jan 08 2014

A001209 a(n) is the solution to the postage stamp problem with 4 denominations and n stamps.

Original entry on oeis.org

4, 12, 24, 44, 71, 114, 165, 234, 326, 427, 547, 708, 873, 1094, 1383, 1650, 1935, 2304, 2782, 3324, 3812, 4368, 5130, 5892, 6745, 7880, 8913, 9919, 11081, 12376, 13932, 15657, 17242, 18892, 21061, 23445, 25553, 27978, 31347, 33981, 36806, 39914, 43592
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
Challis lists up to a(54) and provides recursions up to a(157). - R. J. Mathar, Apr 01 2006
Additional terms a(29) through a(254) can be computed using 3 sets of equations and a table of 10 coefficients available on line at Challis and Robinson. - John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A196069 - 1.
A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(15) to a(28) from Table 1 of Mossige reference added by R. J. Mathar, Mar 29 2006
a(29)-a(54) from Challis and Robinson added by Robert Price, Jul 19 2013

A001208 a(n) = solution to the postage stamp problem with 3 denominations and n stamps.

Original entry on oeis.org

3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633, 714, 805, 902, 1012, 1127, 1254, 1382, 1524, 1678, 1841, 2010, 2188, 2382, 2584, 2801, 3020, 3256, 3508, 3772, 4043, 4326, 4628, 4941, 5272, 5606, 5960, 6334, 6723, 7120
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A195618 - 1.
A row or column of the array A196416 (possibly with 1 subtracted from it).

Programs

  • Maple
    c2 :=array(0..8,[3,3,5,5,7,6,8,8,10]) ; c3 :=array(0..8,1..2,[[1,1],[1,1],[2,1],[2,1],[3,1],[2,2],[3,2],[3,2],[4,2]]); c4 :=array(0..8,1..3,[[0,0,0],[0,0,1],[1,0,1],[1,0,2],[2,0,2],[2,1,2],[3,1,2],[3,1,3],[4,1,3]]) ; for n from 23 to 100 do r := n mod 9 ; t := iquo(n,9) ; a2 := 6*t+c2[r] ; a3 := (2*t+c3[r,1])+(2*t+c3[r,2])*a2 ; printf("%a,",4*t+c4[r,1]+(2*t+c4[r,2])*a2+(3*t+c4[r,3])*a3) ; end: # R. J. Mathar, Apr 01 2006
  • Mathematica
    ClearAll[c2, c3, c4, a]; Evaluate[ Array[c2, 9, 0]] = {3, 3, 5, 5, 7, 6, 8, 8, 10}; Evaluate[ Array[c3, {9, 2}, {0, 1}]] = {{1, 1}, {1, 1}, {2, 1}, {2,1}, {3, 1}, {2, 2}, {3, 2}, {3, 2}, {4, 2}}; Evaluate[ Array[c4, {9, 3}, {0, 1}]] = {{0, 0, 0}, {0, 0, 1}, {1, 0,1}, {1, 0, 2}, {2, 0, 2}, {2, 1, 2}, {3, 1, 2}, {3, 1, 3}, {4, 1,3}}; Evaluate[ Array[a, 19]] = {3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633}; a[n_] := (r = Mod[n, 9]; t = Quotient[n, 9]; a2 = 6t + c2[r]; a3 = (2t + c3[r, 1]) + (2t + c3[r, 2])*a2; 4t + c4[r, 1] + (2t + c4[r, 2])*a2 + (3t + c4[r, 3])*a3); Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 19 2011, after R. J. Mathar's Maple program *)

Extensions

Maple recursion program valid for n>=23 from Challis added by R. J. Mathar, Apr 01 2006
At least 64 terms are known, see Friedman link.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006

A001213 a(n) is the solution to the postage stamp problem with n denominations and 3 stamps.

Original entry on oeis.org

3, 7, 15, 24, 36, 52, 70, 93, 121, 154, 186, 225, 271, 323, 385, 450, 515, 606, 684, 788, 865, 977, 1091, 1201, 1361
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Al Zimmermann, Feb 20 2002
Further terms from Friedman web site, Jun 20 2003
Incorrect value of a(17) removed by Al Zimmermann, Nov 08 2009
a(17)-a(25) from Friedman added by Robert Price, Jul 19 2013

A001210 a(n) is the solution to the postage stamp problem with 5 denominations and n stamps.

Original entry on oeis.org

5, 16, 36, 70, 126, 216, 345, 512, 797, 1055, 1475, 2047, 2659, 3403, 4422, 5629, 6865, 8669, 10835, 12903, 15785, 18801, 22456, 26469, 31108, 36949, 42744, 49436, 57033, 66771, 75558, 86303, 96852, 110253, 123954, 140688, 158389, 178811, 197293, 223580
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
Additional terms a(30) through a(67) are available on line at Challis and Robinson. - John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

Terms up to a(29) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(30)-a(67) from Challis and Robinson added by Robert Price, Jul 19 2013

A001211 a(n) is the solution to the postage stamp problem with 6 denominations and n stamps.

Original entry on oeis.org

6, 20, 52, 108, 211, 388, 664, 1045, 1617, 2510, 3607, 5118, 7066, 9748, 12793, 17061, 22342, 28874, 36560, 45745, 57814, 72997, 87555, 106888, 129783
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

a(11)-a(15) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(16)-a(25) from Challis and Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010

A001214 a(n) is the solution to the postage stamp problem with n denominations and 4 stamps.

Original entry on oeis.org

4, 10, 26, 44, 70, 108, 162, 228, 310, 422, 550, 700, 878, 1079, 1344, 1606, 1944, 2337, 2766, 3195, 3668, 4251, 4923, 5631, 6429
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

a(10) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(11) from Challis & Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(12)-a(25) from Friedman added by Robert Price, Jul 19 2013

A001215 a(n) is the solution to the postage stamp problem with n denominations and 5 stamps.

Original entry on oeis.org

5, 14, 35, 71, 126, 211, 336, 524, 726, 1016, 1393, 1871, 2494, 3196, 4063, 5113, 6511, 7949, 9865, 11589
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.

References

  • R. K. Guy, Unsolved Problems in Number Theory, C12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Extensions

a(9) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(10) from Challis and Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(11)-a(20) from Friedman added by Robert Price, Jul 19 2013
Showing 1-10 of 14 results. Next