cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 981 results. Next

A086980 Late occurring prime gaps in the prime gap sequence A001223.

Original entry on oeis.org

12, 16, 32, 38, 46, 56, 66, 70, 74, 80, 88, 94, 102, 108, 116, 124, 134, 144, 150, 158, 166, 186, 194, 200, 228, 256, 264, 278, 294, 298, 316, 328, 334, 362, 370, 388, 422, 436, 442, 452, 466, 472, 482, 488, 510, 520, 536, 568, 576, 580, 590, 608, 628, 632
Offset: 1

Views

Author

Harry J. Smith, Jul 26 2003

Keywords

Comments

a(n) is the gap g = p_k+1 - p_k between consecutive primes with all even gaps smaller than g occurring at a smaller prime and the next even gap g+2 also occurring earlier.

Examples

			16 is in this list because the first time a prime gap of 16 occurs is between consecutive primes 1831 and 1847. All even prime gaps less than 16 occur for a smaller prime. The next even prime gap of 18 also occurs earlier.
		

References

  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 144.

Crossrefs

A119595 Primes for which the weight as defined in A117078 is 15 and the gap as defined in A001223 is 8.

Original entry on oeis.org

743, 1193, 1523, 1733, 2003, 2243, 2273, 3623, 4583, 4943, 5573, 5693, 6143, 6203, 6473, 7673, 8573, 8933, 9803, 10103, 11243, 11813, 12413, 12503, 13163, 14423, 14843, 15053, 15233, 15383, 16103
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (30i-7) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=743 because of 751=743+mod(743;15) and g(n)=751-743=8
30*((49+1)/2)-7=743
a(2)=1193 because of 1201=1193+mod(1193;15) and g(n)=1201-1193=8
30*((79+1)/2)-7=1193
		

Crossrefs

A119596 Primes for which the weight as defined in A117078 is 11 and the gap as defined in A001223 is 10.

Original entry on oeis.org

241, 1627, 2089, 4201, 4663, 4861, 5323, 6247, 6379, 6709, 8821, 9283, 9679, 10141, 12253, 12517, 12781, 13441, 15091, 15289, 15619, 17599, 17929, 19249, 19447, 19843, 21757, 23539, 26839, 28687, 33703, 34429, 34693, 35089, 35353, 36343
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (22i-1) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=241 because of 251=241+mod(241;11) and 251-241=10.
22*((21+1)/2)-1=241, level=21
a(2)=1627 because of 1637=1627+mod(1627;11) and 1637-1627=10
22*((147+1)/2)-1=1627, level=147
		

Crossrefs

A119597 Primes for which the weight as defined in A117078 is 11 and the gap as defined in A001223 is 6.

Original entry on oeis.org

61, 677, 941, 1117, 1601, 2063, 2371, 3691, 3911, 4021, 5297, 5407, 6067, 6353, 6991, 7541, 7717, 8311, 8641, 8663, 9103, 9851, 10973, 11897, 12491, 12953, 13591, 13613, 13723, 14537, 15131, 15263, 15307, 15461, 15901, 16363
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (22i-5) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=61 because of 67=61+mod(61;11) and 67-61=6.
22*((5+1)/2)-5=61, level=5
a(2)=677 because of 683=677+mod(677;11) and 683-677=6
22*((61+1)/2)-5=677, level=5
		

Crossrefs

A130642 Numbers n such that 1 + Sum{k=1..n/2} A001223(2k-1)*(-1)^k = 0.

Original entry on oeis.org

2, 6, 14, 190, 194, 200, 306, 462, 468, 474, 478, 490, 560, 1208, 1890, 1938, 23716, 23850, 25226, 25834, 25968, 26642, 26650, 26998, 48316, 311888, 311922, 313946, 331540, 331762, 331782, 377078, 377518, 377666, 377674, 377748, 378422, 378428
Offset: 1

Views

Author

Manuel Valdivia, Jun 20 2007

Keywords

Comments

Sequence has 170 terms < 10^8.
Being prime(n) = 1 + Sum{k=1..n-1}A000040(k)*(-1)^Floor(k/2), for n/2 odd and, prime(n) = (1 + Sum{k=1..n- 1}A000040(k)*(-1)^Floor(k/2))*(-1), for n/2 even.

Examples

			1 + ( -A001223(1)) = 1+(-1) = 0, hence 2 is a term.
1 + ( -A001223(1) + A001223(3) - A001223(5)) = 1+(-1+2-2) = 0, hence 6 is a term.
		

Crossrefs

Programs

  • Mathematica
    S=0; a=0; Do[S=S+(Prime[2*k]-Prime[2*k-1])*(-1)^k; If[1+S==0, a++; Print[a, " ", 2*k]], {k, 1, 10^8, 1}]

A130643 Numbers n such that 1 - Sum{k=1..n/2} A001223(2k-1)*(-1)^k = 0.

Original entry on oeis.org

4, 8, 12, 22, 38, 302, 308, 464, 472, 476, 1186, 1884, 2006, 2026, 2106, 23636, 23656, 23698, 25984, 25990, 26706, 26924, 27000, 311914, 311938, 313866, 313880, 331676, 332002, 332676, 377102, 377634, 377670, 379026, 379090, 379108, 387618, 389076
Offset: 1

Views

Author

Manuel Valdivia, Jun 20 2007

Keywords

Comments

Sequence has 177 terms < 10^8.
Being prime(n) = 1 - Sum{k=1..n-1}A000040(k)*(-1)^Floor(k/2), for n/2 even and, prime(n) = (1 - Sum{k=1..n- 1}A000040(k)*(-1)^Floor(k/2))*(-1), for n/2 odd.

Examples

			1 - ( -A001223(1) + A001223(3)) = 1-(-1+2) = 0, hence 4 is a term.
1 - ( -A001223(1) + A001223(3) - A001223(5) + A001223(7)) = 1-(-1+2-2+2) = 0, hence 8 is a term.
		

Crossrefs

Programs

  • Mathematica
    S=0; a=0; Do[S=S+(Prime[2*k]-Prime[2*k-1])*(-1)^k; If[1-S==0, a++; Print[a, " ", 2*k]], {k, 1, 10^8, 1}]

A162188 Numbers k such that A001223(k) > A000005(k).

Original entry on oeis.org

4, 9, 11, 15, 16, 19, 21, 23, 25, 29, 30, 31, 34, 37, 39, 42, 46, 47, 51, 53, 55, 58, 59, 61, 62, 66, 67, 68, 71, 73, 74, 77, 79, 82, 86, 87, 91, 92, 94, 97, 99, 101, 103, 106, 107, 111, 114, 115, 118, 119, 121, 123, 124, 125, 127, 129, 131, 133, 137, 138, 139, 141, 145
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2009

Keywords

Crossrefs

Programs

Extensions

More terms from Franklin T. Adams-Watters, May 26 2010

A162189 Numbers k such that A001223(k) < A000005(k).

Original entry on oeis.org

10, 12, 20, 26, 28, 33, 35, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 69, 70, 72, 75, 78, 81, 84, 88, 90, 96, 98, 100, 102, 104, 105, 108, 110, 112, 116, 117, 120, 126, 130, 132, 136, 140, 142, 144, 147, 148, 152, 153, 156, 160, 165
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2009

Keywords

Crossrefs

Programs

  • Maple
    p2:=2:for n from 1 to 200 do p1:=p2:p2:=ithprime(n+1):if(p2-p1Nathaniel Johnston, Apr 15 2011

Extensions

a(30)-a(56) from Nathaniel Johnston, Apr 15 2011

A196175 Positions of local minima in A001223.

Original entry on oeis.org

5, 7, 10, 13, 17, 20, 22, 26, 28, 31, 33, 35, 38, 41, 43, 45, 49, 52, 57, 60, 64, 67, 69, 75, 78, 81, 83, 85, 89, 93, 95, 98, 100, 104, 109, 113, 116, 120, 122, 126, 131, 134, 136, 138, 140, 142, 144, 148, 152, 155, 159, 163, 167, 169
Offset: 1

Views

Author

Zak Seidov, Oct 27 2011

Keywords

Comments

Or, numbers n such that A001223(n-1)>A001223(n)<A001223(n+1).
We start with A001223:
S1= 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4.
Local minima are shown in brackets:
S2= 1, 2, 2, {4,2,4}, {4,2,4}, {6,2,6}, {4,2,4}, 6, {6,2,6}, {4,2,6}, {6,4,6}, 8, {4,2,4}, {4,2,4}, {14,4,6}, {6,2,10};
values of local minima are 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, and positions of local minima in A001223 give this sequence. Note that in the first and second brackets we take A001223(6)=4 twice. Also note that all 2's starting with A001223(5) and so on are local minima but there are many other local minima.

Examples

			n=5 A001223(4)=4, A001223(5)=2, A001223(6)=4, and A001223(5) is the local minimum;
n=38: A001223(38)=4 is the local minimum because A001223(37)=6 and A001223(39)=6 both > A001223(38).
		

Crossrefs

Cf. A001223 (differences between consecutive primes).
Cf. A036263 (second differences of primes).

Programs

  • Haskell
    a196175 n = a196175_list !! (n-1)
    a196175_list = map (+ 2) $ elemIndices True $
       zipWith (\x y -> x < 0 && y > 0) a036263_list $ tail a036263_list
    -- Reinhard Zumkeller, Oct 29 2011
  • Mathematica
    nn = 1001; t = Differences[Prime[Range[nn]]]; t2 = {}; Do[If[t[[n - 1]] > t[[n]] && t[[n]] < t[[n + 1]], AppendTo[t2, {n, t[[n]]}]], {n, 2, nn - 2}]; Transpose[t2][[1]] (* T. D. Noe, Dec 27 2011 *)

A347101 Fully multiplicative with a(prime(k)) = A001223(k), where A001223 gives the distance from the k-th prime to the (k+1)-th prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 1, 4, 2, 2, 2, 4, 4, 4, 1, 2, 4, 4, 2, 8, 2, 6, 2, 4, 4, 8, 4, 2, 4, 6, 1, 4, 2, 8, 4, 4, 4, 8, 2, 2, 8, 4, 2, 8, 6, 6, 2, 16, 4, 4, 4, 6, 8, 4, 4, 8, 2, 2, 4, 6, 6, 16, 1, 8, 4, 4, 2, 12, 8, 2, 4, 6, 4, 8, 4, 8, 8, 4, 2, 16, 2, 6, 8, 4, 4, 4, 2, 8, 8, 16, 6, 12, 6, 8, 2, 4, 16, 8, 4, 2, 4, 4, 4, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Crossrefs

Cf. A000079 (positions of 1's), A001223, A347102, A347123.

Programs

  • PARI
    A347101(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 1] = (nextprime(f[i, 1]+1)-f[i,1])); factorback(f); };

Formula

For all n >= 0, a(2^n) = 1.
Previous Showing 31-40 of 981 results. Next