cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A171089 a(n) = 2*(Lucas(n)^2 - (-1)^n).

Original entry on oeis.org

6, 4, 16, 34, 96, 244, 646, 1684, 4416, 11554, 30256, 79204, 207366, 542884, 1421296, 3720994, 9741696, 25504084, 66770566, 174807604, 457652256, 1198149154, 3136795216, 8212236484, 21499914246, 56287506244, 147362604496, 385800307234, 1010038317216
Offset: 0

Views

Author

R. J. Mathar, Sep 08 2010

Keywords

Comments

In Thomas Koshy's book on Fibonacci and Lucas numbers, the formula for even-indexed Lucas numbers in terms of squares of Lucas numbers (A001254) is erroneously given as L(2n) = 2L(n)^2 + 2(-1)^(n - 1) on page 404 as Identity 34.7. - Alonso del Arte, Sep 07 2010

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Crossrefs

Cf. A001254.

Programs

  • Magma
    I:=[6, 4, 16]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
    
  • Mathematica
    f[n_] := 2 (LucasL@n^2 - (-1)^n); Array[f, 27, 0] (* Robert G. Wilson v, Sep 10 2010 *)
    CoefficientList[Series[2*(3 - 4*x - 2*x^2)/((1 + x)*(x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
  • PARI
    a(n) = round(2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(2*(3-4*x-2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016

Formula

a(n) = 2*(A000032(n))^2 -2*(-1)^n.
a(n) = 2*A047946(n).
a(n) = 2*a(n-1) + 2*a(n-2) -a(n-3).
G.f.: 2*(3-4*x-2*x^2)/( (1+x)*(x^2-3*x+1) ).
a(n) = 2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - Colin Barker, Oct 01 2016

Extensions

a(21) onwards from Robert G. Wilson v, Sep 10 2010

A203570 Bisection of A201207 (half-convolution of the Lucas sequence A000032 with itself); even part.

Original entry on oeis.org

4, 7, 27, 84, 270, 826, 2488, 7353, 21461, 61960, 177344, 503892, 1422892, 3996619, 11173935, 31114236, 86328978, 238764238, 658478176, 1811322045, 4970928809, 13613135152, 37208048132, 101518052904, 276527670100, 752102592271
Offset: 0

Views

Author

Wolfdieter Lang, Jan 03 2012

Keywords

Comments

The odd part of the bisection of A201207 is given in A203574.
See a comment on A201204 for the definition of the half-convolution of a sequence with itself, and the rule for the o.g.f.s of the bisection. Here the o.g.f. is (Lconve(x) + L2(x))/2, with the o.g.f. Lconve(x) = (4-11*x+11*x^2+x^3)/
(1-3*x+x^2)^2 of A203573 and the o.g.f. L2(x)= (4-7*x-x^2)/ ((1+x)*(1-3*x+x^2)) of A001254. This leads to the o.g.f. given in the formula section.

Crossrefs

Formula

a(n) = A201207(2*n), n>=0.
a(n) = (2*(4*n+6)*F(2*n+1)-4*(n+1)*F(2*n))/4 + (-1)^n, with the Fibonacci numbers F(n)=A000045(n).
O.g.f.: (4-13*x+4*x^3+12*x^2)/((1-3*x+x^2)^2*(1+x)). See a comment above.

A216243 Partial sums of the squares of Lucas numbers (A000032).

Original entry on oeis.org

4, 5, 14, 30, 79, 200, 524, 1365, 3574, 9350, 24479, 64080, 167764, 439205, 1149854, 3010350, 7881199, 20633240, 54018524, 141422325, 370248454, 969323030, 2537720639, 6643838880, 17393796004, 45537549125, 119218851374, 312119004990, 817138163599, 2139295485800
Offset: 0

Views

Author

R. J. Mathar, Mar 14 2013

Keywords

Crossrefs

Cf. A001654.

Programs

  • Maple
    A001254 := proc(n)
            A000032(n)^2 ;
    end proc;
    A := proc(n)
            add( A001254(i),i=0..n) ;
    end proc:
  • Mathematica
    Accumulate[LucasL[Range[0,30]]^2] (* or *) LinearRecurrence[{3,0,-3,1},{4,5,14,30},30] (* Harvey P. Dale, Oct 13 2019 *)

Formula

a(n) = Sum_{i=0..n} A001254(i) = A002878(n) +A176040(n) = A215602(n)+2.
G.f.: ( -4+7*x+x^2 ) / ( (x-1)*(1+x)*(x^2-3*x+1) ).
a(n) = -7*A064831(n) -A064831(n-1) +4*A064831(n+1).
a(n) = L(2*n+1) + 2 + (-1)^n, for L(n) the Lucas sequence A000032(n). - Greg Dresden, Jan 26 2021

A383039 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000032(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

7, 1, 17, 31, 97, 241, 647, 1681, 4417, 11551, 30257, 79201, 207367, 542881, 1421297, 3720991, 9741697, 25504081, 66770567, 174807601, 457652257, 1198149151, 3136795217, 8212236481, 21499914247, 56287506241, 147362604497, 385800307231, 1010038317217, 2644314644401, 6922905616007
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the short leg is A382379(3,1) = 5 and the long leg is A382379(3,2) = 12 so the sum of the legs is then a(2) = 5 + 12 = 17.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{2#^2-1}&,a]]

Formula

a(n) = A382379(n,1) + A382379(n,2).
a(n) = 2*Lucas(n)^2 - 1.
a(n) = 2*A001254(n) - 1.

A105949 Powers of 3-Step Lucas numbers (A001644).

Original entry on oeis.org

1, 3, 9, 11, 21, 27, 39, 49, 71, 81, 121, 131, 241, 243, 343, 441, 443, 729, 815, 1331, 1499, 1521, 2187, 2401, 2757, 5041, 5071, 6561, 9261, 9327, 14641, 16807, 17155, 17161, 19683, 31553, 58035, 58081, 59049, 59319, 106743, 117649, 161051, 177147
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2005

Keywords

Comments

A001644 3-Step Lucas numbers. A000032 Lucas numbers. A001254 Squares of Lucas numbers. A075155 Cubes of Lucas numbers. A099923 Fourth powers of Lucas numbers. A103325 Fifth powers of Lucas numbers. A103324 Square array T(n,k) read by antidiagonals: powers of Lucas numbers. A105317 Powers of Fibonacci numbers.

Crossrefs

Formula

{A001644(n)} U {A001644(n)^2} U {A001644(n)^3}...

A140328 Sum of two squares of Lucas numbers (A000032).

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 32, 50, 53, 58, 65, 98, 122, 125, 130, 137, 170, 242, 325, 328, 333, 340, 373, 445, 648, 842, 845, 850, 857, 890, 965, 1165, 1682, 2210, 2213, 2218, 2225, 2258, 2330, 2533, 3050, 4418, 5777, 5780, 5785, 5792, 5825, 5897, 6100
Offset: 1

Views

Author

Jonathan Vos Post, May 26 2008

Keywords

Comments

This is to A045702 as Lucas numbers (A000032) are to Fibonacci numbers A000045. Hypotenuse squared of right triangle whose legs are both Lucas numbers.

Examples

			a(1) = 2 because A001254(1) = 1^2 = 1 and 1 + 1 = 2.
a(17) = 125 because A001254(5) = 11^2 = 121, A001254(0) = 2^2 = 4 and 125 + 4 = 125.
		

Crossrefs

Formula

{k = i + j such that i is in A000032^2 and j is in A000032^2} = {k = i + j such that i is in A001254 and j is in A001254}.

A235944 Digital roots of squares of Lucas numbers.

Original entry on oeis.org

4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1, 4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1
Offset: 0

Views

Author

Colin Barker, Jan 17 2014

Keywords

Comments

The sequence is periodic with period 12.

Examples

			a(5)=4 because A000032[5]=11 and the digital root of 11*11 = 121 is 4.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{4, 1, 9, 7, 4, 4, 9, 4, 4, 7, 9, 1},108] (* Ray Chandler, Aug 27 2015 *)
    PadRight[{},120,{4,1,9,7,4,4,9,4,4,7,9,1}] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    Vec(-(x^11+9*x^10+7*x^9+4*x^8+4*x^7+9*x^6+4*x^5+4*x^4+7*x^3+9*x^2+x+4)/(x^12-1) + O(x^100))

Formula

a(n) = A010888(A001254(n)).
a(n) = a(n-12).
G.f.: -(x^11 +9*x^10 +7*x^9 +4*x^8 +4*x^7 +9*x^6 +4*x^5 +4*x^4 +7*x^3 +9*x^2 +x +4) / (x^12 -1).

Extensions

Extended by Ray Chandler, Aug 27 2015
Previous Showing 21-27 of 27 results.