cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A304988 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 3, 4, 16, 20, 67, 84, 231, 324, 735, 1026, 2265, 3086, 6199, 8880, 16564, 23390, 42378, 59496, 103588, 146376, 244278, 344186, 564013, 788168, 1255201, 1758400, 2738833, 3812242, 5846114, 8092092, 12200957, 16848156, 24991705, 34365176, 50392543
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 7^(3/2) * exp(Pi*sqrt(7*n/3)) / (768*n^2).

A366132 Number of unordered pairs of distinct strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 10, 15, 28, 45, 66, 105, 153, 231, 351, 496, 703, 1035, 1431, 2016, 2850, 3916, 5356, 7381, 10011, 13530, 18336, 24531, 32640, 43660, 57630, 75855, 100128, 130816, 170820, 222778, 288420, 372816, 481671, 618828, 793170, 1016025, 1295245
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(3) = 1 through a(8) = 15 pairs of strict partitions:
  {3,21}  {4,31}  {5,32}   {6,42}    {7,43}    {8,53}
                  {5,41}   {6,51}    {7,52}    {8,62}
                  {41,32}  {51,42}   {7,61}    {8,71}
                           {6,321}   {52,43}   {62,53}
                           {42,321}  {61,43}   {71,53}
                           {51,321}  {61,52}   {71,62}
                                     {7,421}   {8,431}
                                     {43,421}  {8,521}
                                     {52,421}  {53,431}
                                     {61,421}  {53,521}
                                               {62,431}
                                               {62,521}
                                               {71,431}
                                               {71,521}
                                               {521,431}
		

Crossrefs

For subsets instead of partitions we have A006516, non-disjoint A003462.
The disjoint case is A108796, non-strict A260669.
For non-strict partitions we have A355389.
The ordered disjoint case is A365662, non-strict A054440.
The ordered version is 2*a(n).
Including equal pairs or twins gives A366317, ordered A304990.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A161680 and A000217 count 2-subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]

Formula

a(n) = binomial(A000009(n),2).

A368564 a(n) = number of pairs (p,q) of partitions of n such that d(p,q) = o(p,q), where d and o are distance functions; see Comments.

Original entry on oeis.org

1, 2, 3, 7, 15, 43, 57, 60, 82, 134, 184, 247, 331, 451, 562, 771, 985, 1277, 1630, 2071, 2640, 3344, 4119, 5195, 6514, 8062
Offset: 1

Views

Author

Clark Kimberling, Dec 31 2023

Keywords

Comments

The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.

Examples

			The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
          |    4   31   22   211  1111
------------------------------------------------
   4 d    |    0    2    4    4    6
     o    |    0    1    2    3    4
  31 d    |    2    0    2    2    4
     o    |    1    0    1    2    3
  22 d    |    4    2    0    2    4
     o    |    2    1    0    1    2
 211 d    |    4    2    2    0    2
     o    |    3    2    1    0    1
1111 d    |    6    4    4    2    0
     o    |    4    3    2    1    0
The table shows 7 pairs (p,q) for which d(p,q) = o(p,q), so a(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := PartitionsP[n];
    q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
    r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
    d[u_, v_] := Total[Abs[u - v]];
    p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
    Table[Count[p[n], 0], {n, 1, 16}]  (* A368565  *)
    Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}]  (* A368566 *)
    Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}]  (* A368567 *)

Formula

a(n) + A368565(n) + A368566(n) = A001255(n) for n >= 1.

A370005 Number T(n,k) of ordered pairs of partitions of n with exactly k common parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 4, 3, 1, 1, 12, 7, 4, 1, 1, 16, 19, 8, 4, 1, 1, 48, 35, 23, 9, 4, 1, 1, 60, 83, 43, 24, 9, 4, 1, 1, 148, 143, 106, 47, 25, 9, 4, 1, 1, 220, 291, 186, 115, 48, 25, 9, 4, 1, 1, 438, 511, 397, 210, 119, 49, 25, 9, 4, 1, 1, 618, 949, 697, 444, 219, 120, 49, 25, 9, 4, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 07 2024

Keywords

Examples

			T(4,0) = 12: (1111,22), (1111,4), (211,4), (22,1111), (22,31), (22,4), (31,22), (31,4), (4,1111), (4,211), (4,22), (4,31).
T(4,1) = 7: (1111,31), (211,22), (211,31), (22,211), (31,1111), (31,211), (4,4).
T(4,2) = 4: (1111,211), (211,1111), (22,22), (31,31).
T(4,3) = 1: (211,211).
T(4,4) = 1: (1111,1111).
Triangle T(n,k) begins:
    1;
    0,   1;
    2,   1,   1;
    4,   3,   1,   1;
   12,   7,   4,   1,   1;
   16,  19,   8,   4,   1,  1;
   48,  35,  23,   9,   4,  1,  1;
   60,  83,  43,  24,   9,  4,  1, 1;
  148, 143, 106,  47,  25,  9,  4, 1, 1;
  220, 291, 186, 115,  48, 25,  9, 4, 1, 1;
  438, 511, 397, 210, 119, 49, 25, 9, 4, 1, 1;
  ...
		

Crossrefs

Column k=0 gives A054440.
Row sums and T(2n,n) give A001255.

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
          add(add(expand(b(sort([n-i*j, m-i*h])[], i-1)*
           x^min(j, h)), h=0..m/i), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$3)):
    seq(T(n), n=0..12);

A141210 Triangle read by rows, A140207^2.

Original entry on oeis.org

1, 2, 1, 4, 3, 4, 7, 6, 10, 9, 12, 11, 20, 24, 25, 19, 18, 34, 45, 60, 49, 30, 29, 56, 78, 115, 126, 121, 45, 44, 86, 123, 190, 231, 286, 225, 67, 66, 130, 189, 300, 385, 528, 555, 484, 97, 96, 190, 279, 450, 595, 858, 1005, 1144, 900
Offset: 0

Views

Author

Keywords

Comments

Left border of the triangle = A000070; right border = A001255.

Examples

			First few rows of the triangle are:
1;
2, 1;
4, 3, 4;
7, 6, 10, 9;
12, 11, 20, 24, 25;
19, 18, 34, 45, 60, 49;
30, 29, 56, 78, 115, 126, 121;
...
		

Crossrefs

Cf. A001255, A141211 (row sums), A140207, A000070.

Formula

A140207^2 as an infinite lower triangular matrix.

A355390 Number of ordered pairs of distinct integer partitions of n.

Original entry on oeis.org

0, 0, 2, 6, 20, 42, 110, 210, 462, 870, 1722, 3080, 5852, 10100, 18090, 30800, 53130, 87912, 147840, 239610, 392502, 626472, 1003002, 1573770, 2479050, 3831806, 5931660, 9057090, 13819806, 20834660, 31399212, 46806122, 69697452, 102870306, 151523790, 221488806
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Examples

			The a(0) = 0 through a(3) = 6 pairs:
  .  .  (11)(2)  (21)(3)
        (2)(11)  (3)(21)
                 (111)(3)
                 (3)(111)
                 (111)(21)
                 (21)(111)
		

Crossrefs

Without distinctness we have A001255, unordered A086737.
The version for compositions is A020522, unordered A006516.
The unordered version is A355389.
A000041 counts partitions, strict A000009.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],UnsameQ@@#&]],{n,0,15}]
  • PARI
    a(n) = 2*binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022

Formula

a(n) = 2*A355389(n) = 2*binomial(A000041(n), 2).

A304989 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k)^2 * x^k.

Original entry on oeis.org

1, 0, 3, 2, 16, 10, 59, 32, 187, 90, 519, 152, 1439, 164, 3525, -246, 8904, -2500, 21748, -10836, 53918, -36508, 131424, -115266, 328703, -336608, 812615, -957464, 2046225, -2634166, 5152190, -7145682, 13121677, -19039178, 33473773, -50395004, 86035125
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.6096199212376592810929072080593393678131347423108390218672748044914523428584..., c = 3.049014588253509415528984781833089943634060493523166258285691300445092167...

A383354 Squares of plane partition numbers.

Original entry on oeis.org

1, 1, 9, 36, 169, 576, 2304, 7396, 25600, 79524, 250000, 737881, 2187441, 6175225, 17363889, 47320641, 127622209, 336135556, 876219201, 2240128900, 5666777284, 14112014436, 34772925625, 84554753089, 203576025636, 484461937089, 1142215875025, 2665572144964, 6166451098756
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]^2

Formula

a(n) = [(x*y)^n] Product_{k>=1} 1 / ((1 - x^k) * (1 - y^k))^k.
a(n) = A000219(n)^2.
Previous Showing 21-28 of 28 results.