cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A141350 Overpseudoprimes to base 3.

Original entry on oeis.org

121, 703, 3281, 8401, 12403, 31621, 44287, 47197, 55969, 74593, 79003, 88573, 97567, 105163, 112141, 211411, 221761, 226801, 228073, 293401, 313447, 320167, 328021, 340033, 359341, 432821, 443713, 453259, 478297, 497503, 504913, 679057, 709873, 801139, 867043, 894781, 973241, 1042417
Offset: 1

Views

Author

Vladimir Shevelev, Jun 27 2008, corrected Sep 07 2008

Keywords

Comments

If h_3(n) is the multiplicative order of 3 modulo n, r_3(n) is the number of cyclotomic cosets of 3 modulo n then, by the definition, n is an overpseudoprime to base 3 if h_3(n)*r_3(n)+1=n. These numbers are in A020229.
In particular, if n is squarefree such that its prime factorization is n=p_1*...*p_k, then n is overpseudoprime of base 3 iff h_3(p_1)=...=h_3(p_k).

Crossrefs

Programs

  • Mathematica
    ops3Q[n_] := CompositeQ[n] && GCD[n, 3] == 1 && MultiplicativeOrder[3, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[3, #] &] - 1) + 1 == n; Select[Range[10^6], ops3Q] (* Amiram Eldar, Jun 24 2019 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (gcd(n,3)==1) && (znorder(Mod(3,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(3, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018

Extensions

a(10)-a(38) from Gilberto Garcia-Pulgarin added by Vladimir Shevelev, Feb 06 2012

A180065 Smallest strong pseudoprime to base 2 with n prime factors.

Original entry on oeis.org

2047, 15841, 800605, 293609485, 10761055201, 5478598723585, 713808066913201, 90614118359482705, 5993318051893040401, 24325630440506854886701, 27146803388402594456683201, 4365221464536367089854499301, 2162223198751674481689868383601, 548097717006566233800428685318301
Offset: 2

Views

Author

Kevin Batista (kevin762401(AT)yahoo.com), Aug 09 2010

Keywords

Examples

			800605 is the third term because 800605 = 5 * 13 * 109 * 113, more prime factors than smaller 2-strong pseudoprimes.
		

Crossrefs

Programs

  • PARI
    strong_check(p, base, e, r) = my(tv=valuation(p-1, 2)); tv > e && Mod(base, p)^((p-1)>>(tv-e)) == r;
    strong_fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k, e, r) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1 && strong_check(p, base, e, r), my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; strong_check(p, base, e, r) || next; my(z=znorder(Mod(base, p))); gcd(m,z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1, e, r)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); my(res=f(1, 1, 2, k, 0, 1)); for(v=0, logint(B, 2), res=concat(res, f(1, 1, 2, k, v, -1))); vecsort(Set(res));
    a(n) = if(n < 2, return()); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=strong_fermat_psp(x, y, n, 2)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Mar 04 2023

Extensions

a(6)-a(10) and editing from Charles R Greathouse IV, Aug 29 2010
a(11)-a(15) from Daniel Suteu, Sep 24 2022

A270697 Composite numbers k == 3 (mod 4) such that (1 + i)^k == 1 - i (mod k), where i = sqrt(-1).

Original entry on oeis.org

2047, 42799, 90751, 256999, 271951, 476971, 514447, 741751, 877099, 916327, 1302451, 1325843, 1397419, 1441091, 1507963, 1530787, 1907851, 2004403, 2205967, 2304167, 2748023, 2811271, 2953711, 2976487, 3090091, 3116107, 4469471, 4863127, 5016191
Offset: 1

Views

Author

Keywords

Comments

Composite k == 3 (mod 4) such that 2*(-4)^((k-3)/4) == -1 (mod k). - Robert Israel, Mar 21 2016
2*(-4)^((p-3)/4) == -1 (mod p) is satisfied by all primes p == 3 (mod 4), see A318908. - Jianing Song, Sep 05 2018
Numbers in A047713 that are congruent to 3 mod 4. Most terms are congruent to 7 mod 8. For terms congruent to 3 mod 8, see A244628. - Jianing Song, Sep 05 2018
Question: Is this a subsequence of A001262? I have verified that it contains all terms up to 2^64. - Joseph M. Shunia, Jul 02 2019

Crossrefs

Subsequence of A001567 and A047713.
A244628 is a proper subsequence.

Programs

  • Maple
    select(t -> not isprime(t) and 1 + 2*(-4) &^ ((t-3)/4) mod t = 0, [seq(i, i=7..10^7, 4)]); # Robert Israel, Mar 21 2016
  • Mathematica
    Select[3 + 4*Range[10000000], PrimeQ[#] == False && PowerMod[1 + I, #, #] == Mod[1 - I, #] &]
  • PARI
    forstep(n=3, 10^7, 4, if(Mod(2, n)^((n-1)/2)==kronecker(2, n) && !isprime(n), print1(n, ", ")))

A020236 Strong pseudoprimes to base 10.

Original entry on oeis.org

9, 91, 1729, 4187, 6533, 8149, 8401, 10001, 11111, 19201, 21931, 50851, 79003, 83119, 94139, 100001, 102173, 118301, 118957, 134863, 139231, 148417, 158497, 166499, 188191, 196651, 201917, 216001, 226273, 231337, 237169, 251251, 287809, 302177
Offset: 1

Views

Author

Keywords

Examples

			From _Alonso del Arte_, Aug 10 2018: (Start)
9 is a strong pseudoprime to base 10. It's not enough to check that 10^8 = 1 mod 9. Since 8 = 1 * 2^3, we also need to verify that 10 = 1 mod 9 and 10^2 = 1 mod 9 as well. Since these are both equal to 1, we see that 9 is indeed a strong pseudoprime to base 10.
91 is also a strong pseudoprime to base 10. Besides checking that 10^90 = 1 mod 91, since 90 = 45 * 2, we also check that 10^45 = -1 mod 91; the -1 is enough to satisfy the definition of a strong pseudoprime.
99 is a Fermat pseudoprime to base 10 (see A005939) but it is not a strong pseudoprime to base 10. Although 10^98 = 1 mod 99, since 98 = 49 * 2, we have to check 10^49 mod 99, and there we find not -1 nor 1 but 10. Therefore 99 is not in this sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    strongPseudoprimeQ[b_, n_] := Module[{rems = Table[PowerMod[b, (n - 1)/2^expo, n], {expo, 0, IntegerExponent[n - 1,2]}]}, (rems[[-1]] == 1 || MemberQ[rems, n - 1]) && PowerMod[b, n - 1, n] == 1]; max = 5000; Select[Complement[Range[2, max], Prime[Range[PrimePi[max]]]], strongPseudoprimeQ[10, #] &] (* Alonso del Arte, Aug 10 2018 *)

A122929 Multiplicative order of 2 mod A141232(n).

Original entry on oeis.org

11, 28, 36, 52, 48, 60, 52, 148, 76, 68, 51, 52, 29, 92, 156, 92, 29, 179, 166, 100, 44, 102, 239, 156, 50, 25, 51, 364, 224, 204, 244, 166, 66, 346, 194, 388, 618, 92, 388, 102, 660, 371, 388, 29, 772, 828, 239, 460, 55, 292, 431, 166, 882, 1060, 532, 155, 68
Offset: 1

Views

Author

Vladimir Shevelev, Jul 05 2008, Jul 12 2008, Jul 23 2008

Keywords

Crossrefs

Programs

  • PARI
    a137576(n)=my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && (a137576((n-1)/2) == n), print1(znorder(Mod(2, n)), ", ");););} \\ Michel Marcus, Feb 09 2015

Extensions

More terms from Michel Marcus, Feb 09 2015

A215568 Strong pseudoprimes to base 2 and 5.

Original entry on oeis.org

1907851, 4181921, 4469471, 5256091, 9006401, 9863461, 14709241, 25326001, 40987201, 55729957, 58449847, 67194401, 94502701, 100618933, 109437751, 114305441, 133800661, 135969401, 147028001, 153928133, 161304001, 192857761, 196049701, 213035761, 226359547, 245950561
Offset: 1

Views

Author

M. F. Hasler, Aug 16 2012

Keywords

Crossrefs

Intersection of A001262 and A020231.

A230483 Strong pseudoprimes (base 2) that become prime when two is subtracted.

Original entry on oeis.org

4681, 29341, 42799, 49141, 52633, 85489, 90751, 104653, 458989, 1004653, 1082401, 1251949, 1302451, 1907851, 2510569, 2811271, 3090091, 3539101, 5044033, 5049001, 5489641, 5590621, 7177105, 9069229, 9073513, 9567673, 9995671, 10323769, 11473885, 12263131
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 20 2013

Keywords

Examples

			4681 is a strong pseudoprime (base 2) and 4679 is prime.
		

Crossrefs

A230484 Strong pseudoprimes (base 2) that become prime when two is added.

Original entry on oeis.org

253241, 280601, 580337, 1207361, 1678541, 1909001, 2419385, 5173601, 16324001, 18073817, 22849481, 25080101, 43363601, 60155201, 67194401, 82870517, 85519337, 97924217, 100943201, 102004421, 104857391, 116090081, 128987429, 134696801, 135969401, 145348529
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 20 2013

Keywords

Examples

			253241 is a strong pseudoprime (base 2) and 253243 is prime.
		

Crossrefs

A020239 Strong pseudoprimes to base 13.

Original entry on oeis.org

85, 1099, 5149, 7107, 8911, 9637, 13019, 14491, 17803, 19757, 20881, 22177, 23521, 26521, 35371, 44173, 45629, 54097, 56033, 57205, 75241, 83333, 85285, 86347, 102719, 110309, 153401, 184339, 191959, 222529, 242845, 253021, 253927, 269861
Offset: 1

Views

Author

Keywords

Programs

A068216 a(n) is the smallest n-digit pseudoprime (to base 2).

Original entry on oeis.org

341, 1105, 10261, 101101, 1004653, 10004681, 100017223, 1001152801, 10000321321, 100004790097, 1000001376901, 10000130243671, 100000105970311, 1000000191735161, 10000006286491369, 100000010102756401, 1000000114865704261, 10000000494514450733
Offset: 3

Views

Author

Keywords

Crossrefs

Extensions

One more term from Farideh Firoozbakht, Jan 10 2007
More terms from Jens Kruse Andersen, May 11 2008
Offset corrected by Arkadiusz Wesolowski, Dec 14 2011
Previous Showing 31-40 of 78 results. Next