cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 87 results. Next

A077483 Numerator of the probability P(n) of the occurrence of a 2D self-trapping walk of length n.

Original entry on oeis.org

2, 5, 31, 173, 1521, 1056, 16709, 184183, 1370009, 474809, 13478513, 150399317, 1034714947, 2897704261
Offset: 7

Views

Author

Hugo Pfoertner, Nov 08 2002

Keywords

Comments

A comparison of the exact probabilities with simulation results obtained for 1.2*10^10 random walks is given under "Results of simulation, comparison with exact probabilities" in the first link. The behavior of P(n) for larger values of n is illustrated in "Probability density for the number of steps before trapping occurs" at the same location. P(n) has a maximum for n=31 (P(31)~=1/85.01) and drops exponentially for large n (P(800)~=1/10^9). The average walk length determined by the numerical simulation is sum n=7..infinity (n*P(n))=70.7598+-0.001

Examples

			A077483(10)=173 and A077484(10)=1 because there are 4 different probabilities for the 50 (=2*A077482(10)) walks: 4 walks with probability p1=1/6561, 14 walks with p2=1/8748, 22 walks with p3=1/13122, 10 walks with p4=1/19683. The sum of all probabilities is P(10) = 4*p1+14*p2+22*p3+10*p4 = (12*4+9*14+6*22+4*10)/78732 = 346/78732 = 173 / (3^9 * 2^1)
		

References

  • Alexander Renner, Self avoiding walks and lattice polymers, Diplomarbeit University of Vienna, December 1994
  • More references are given in the sci.math NG posting in the second link

Crossrefs

Programs

  • Fortran
    c See Hugo Pfoertner link.

Formula

P(n) = A077483(n) / ( 3^(n-1) * 2^A077484(n) )

A078717 Number of n-step self-avoiding walks on cubic lattice with first step specified.

Original entry on oeis.org

1, 5, 25, 121, 589, 2821, 13565, 64661, 308981, 1468313, 6989025, 33140457, 157329085, 744818613, 3529191009, 16686979329, 78955042017, 372953947349, 1762672203269, 8319554639789, 39285015083693, 185296997240401, 874331369198569
Offset: 1

Views

Author

Hugo Pfoertner, Dec 18 2002

Keywords

References

Crossrefs

Equals A001412/6. Cf. A001411, A046661, A002902.

A322831 Average path length to self-trapping, rounded to nearest integer, of self-avoiding two-dimensional random walks using unit steps and direction changes from the set Pi*(2*k/n - 1), k = 1..n-1.

Original entry on oeis.org

71, 71, 40, 77, 45, 51, 42, 56, 49, 51, 48, 54
Offset: 3

Views

Author

Hugo Pfoertner, Dec 27 2018

Keywords

Comments

The cases n = 3, 4, and 6 correspond to the usual self-avoiding random walks on the honeycomb net, the square lattice, and the hexagonal lattice, respectively. The other cases n = 5, 7, ... are a generalization using self-avoiding rooted walks similar to those defined in A306175, A306177, ..., A306182. The walk is trapped if it cannot be continued without either hitting an already visited (lattice) point or crossing or touching any straight line connecting successively visited points on the path up to the current point.
The result 71 for n=4 was established in 1984 by Hemmer & Hemmer.
The sequence data are based on the following results of at least 10^9 simulated random walks for each n <= 12, with an uncertainty of +- 0.004 for the average walk length:
n length
3 71.132
4 70.760 (+-0.001)
5 40.375
6 77.150
7 45.297
8 51.150
9 42.049
10 56.189
11 48.523
12 51.486
13 47.9 (+-0.2)
14 53.9 (+-0.2)

Crossrefs

A342883 Number of n-step self-avoiding walks on 7-D cubic lattice.

Original entry on oeis.org

1, 14, 182, 2366, 30590, 395654, 5110070, 66009062, 852194966, 11002765718, 142019952830, 1833202179662, 23659632189662, 305360673698150, 3940760013826454, 50857078231126286, 656293571739976142, 8469305943784113806, 109290078485661202262, 1410313416278288850230
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342884 Number of n-step self-avoiding walks on 8-D cubic lattice.

Original entry on oeis.org

1, 16, 240, 3600, 53776, 803504, 11994096, 179054640, 2672126256, 39878886896, 595065468048, 8879592484240, 132491660323472, 1976912303612080, 29496313445323888, 440098575225868624, 6566302628140689744, 97969968518462054352, 1461698348385616122224
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342885 Number of n-step self-avoiding walks on 9-D cubic lattice.

Original entry on oeis.org

1, 18, 306, 5202, 88146, 1493874, 25300530, 428518386, 7256300850, 122876680626, 2080586127186, 35229409431570, 596495353475538, 10099744526658546, 171003188767881906, 2895335387107970706, 49021668492861718674, 829999403731225961874
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342886 Number of n-step self-avoiding walks on 10-D cubic lattice.

Original entry on oeis.org

1, 20, 380, 7220, 136820, 2593100, 49121660, 930556460, 17625825740, 333857601020, 6323384122580, 119767717450100, 2268399952520660, 42963566150826380, 813721674662589980, 15411746407417290020, 291893918240586194660, 5528387235193561980740
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342887 Number of n-step self-avoiding walks on 11-D cubic lattice.

Original entry on oeis.org

1, 22, 462, 9702, 203302, 4260542, 89253582, 1869809502, 39167457582, 820458452462, 17185914925542, 359989506212182, 7540511273930822, 157947298263243742, 3308420553034902382, 69299392385043268822, 1451565583054963249302, 30404929596858248780502
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342888 Number of n-step self-avoiding walks on 12-D cubic lattice.

Original entry on oeis.org

1, 24, 552, 12696, 291480, 6692424, 153614760, 3526063752, 80931227016, 1857565708968, 42634594787160, 978544945823832, 22459264078075992, 515478463349872200, 11831064537706447464, 271542137952854806776, 6232321082672399260152, 143041632747658763159736
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A002902 Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.

Original entry on oeis.org

3, 15, 75, 363, 1767, 8463, 40695, 193983, 926943, 4404939, 20967075, 99421371, 471987255, 2234455839, 10587573027, 50060937987, 236865126051, 1118861842047, 5288016609807, 24958663919367, 117855045251079, 555890991721203, 2622994107595707
Offset: 1

Views

Author

Keywords

References

  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (1/2)*A001412. Cf. A078717, A001411, A001413.

Extensions

Name amended by Scott R. Shannon, Sep 17 2020
Previous Showing 21-30 of 87 results. Next