A077483
Numerator of the probability P(n) of the occurrence of a 2D self-trapping walk of length n.
Original entry on oeis.org
2, 5, 31, 173, 1521, 1056, 16709, 184183, 1370009, 474809, 13478513, 150399317, 1034714947, 2897704261
Offset: 7
A077483(10)=173 and A077484(10)=1 because there are 4 different probabilities for the 50 (=2*A077482(10)) walks: 4 walks with probability p1=1/6561, 14 walks with p2=1/8748, 22 walks with p3=1/13122, 10 walks with p4=1/19683. The sum of all probabilities is P(10) = 4*p1+14*p2+22*p3+10*p4 = (12*4+9*14+6*22+4*10)/78732 = 346/78732 = 173 / (3^9 * 2^1)
- Alexander Renner, Self avoiding walks and lattice polymers, Diplomarbeit University of Vienna, December 1994
- More references are given in the sci.math NG posting in the second link
A078717
Number of n-step self-avoiding walks on cubic lattice with first step specified.
Original entry on oeis.org
1, 5, 25, 121, 589, 2821, 13565, 64661, 308981, 1468313, 6989025, 33140457, 157329085, 744818613, 3529191009, 16686979329, 78955042017, 372953947349, 1762672203269, 8319554639789, 39285015083693, 185296997240401, 874331369198569
Offset: 1
A322831
Average path length to self-trapping, rounded to nearest integer, of self-avoiding two-dimensional random walks using unit steps and direction changes from the set Pi*(2*k/n - 1), k = 1..n-1.
Original entry on oeis.org
71, 71, 40, 77, 45, 51, 42, 56, 49, 51, 48, 54
Offset: 3
- S. Hemmer, P. C. Hemmer, An average self-avoiding random walk on the square lattice lasts 71 steps, J. Chem. Phys. 81, 584 (1984)
- Hugo Pfoertner, Examples of self-trapping random walks.
- Hugo Pfoertner, Probability density for the number of steps before trapping occurs, 2018.
- Hugo Pfoertner, Results for the 2D Self-Trapping Random Walk.
- Alexander Renner, Self avoiding walks and lattice polymers, Diplomarbeit, Universität Wien, December 1994.
Cf.
A001668,
A001411,
A001334,
A077482,
A306175,
A306177,
A306178,
A306179,
A306180,
A306181,
A306182.
Cf.
A122223,
A122224,
A122226,
A127399,
A127400,
A127401,
A300665,
A323141,
A323560,
A323562,
A323699.
A342883
Number of n-step self-avoiding walks on 7-D cubic lattice.
Original entry on oeis.org
1, 14, 182, 2366, 30590, 395654, 5110070, 66009062, 852194966, 11002765718, 142019952830, 1833202179662, 23659632189662, 305360673698150, 3940760013826454, 50857078231126286, 656293571739976142, 8469305943784113806, 109290078485661202262, 1410313416278288850230
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A342884
Number of n-step self-avoiding walks on 8-D cubic lattice.
Original entry on oeis.org
1, 16, 240, 3600, 53776, 803504, 11994096, 179054640, 2672126256, 39878886896, 595065468048, 8879592484240, 132491660323472, 1976912303612080, 29496313445323888, 440098575225868624, 6566302628140689744, 97969968518462054352, 1461698348385616122224
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A342885
Number of n-step self-avoiding walks on 9-D cubic lattice.
Original entry on oeis.org
1, 18, 306, 5202, 88146, 1493874, 25300530, 428518386, 7256300850, 122876680626, 2080586127186, 35229409431570, 596495353475538, 10099744526658546, 171003188767881906, 2895335387107970706, 49021668492861718674, 829999403731225961874
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A342886
Number of n-step self-avoiding walks on 10-D cubic lattice.
Original entry on oeis.org
1, 20, 380, 7220, 136820, 2593100, 49121660, 930556460, 17625825740, 333857601020, 6323384122580, 119767717450100, 2268399952520660, 42963566150826380, 813721674662589980, 15411746407417290020, 291893918240586194660, 5528387235193561980740
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A342887
Number of n-step self-avoiding walks on 11-D cubic lattice.
Original entry on oeis.org
1, 22, 462, 9702, 203302, 4260542, 89253582, 1869809502, 39167457582, 820458452462, 17185914925542, 359989506212182, 7540511273930822, 157947298263243742, 3308420553034902382, 69299392385043268822, 1451565583054963249302, 30404929596858248780502
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A342888
Number of n-step self-avoiding walks on 12-D cubic lattice.
Original entry on oeis.org
1, 24, 552, 12696, 291480, 6692424, 153614760, 3526063752, 80931227016, 1857565708968, 42634594787160, 978544945823832, 22459264078075992, 515478463349872200, 11831064537706447464, 271542137952854806776, 6232321082672399260152, 143041632747658763159736
Offset: 0
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24).
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion: tables [Tables in humanly readable form]; Local copy.
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see
A001411,
A001412,
A010575,
A010576,
A010577,
A342883,
A342884,
A342885,
A342886,
A342887,
A342888.
A002902
Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.
Original entry on oeis.org
3, 15, 75, 363, 1767, 8463, 40695, 193983, 926943, 4404939, 20967075, 99421371, 471987255, 2234455839, 10587573027, 50060937987, 236865126051, 1118861842047, 5288016609807, 24958663919367, 117855045251079, 555890991721203, 2622994107595707
Offset: 1
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
- M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
Comments