A368731
Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0
Non-isomorphic representatives of the a(3) = 10 set-systems:
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
The case of labeled covering graphs is
A367863, binomial transform
A367862.
These include the set-systems ranked by
A367917.
Requiring all edges to be singletons or pairs gives
A368598.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
-
a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024
A369202
Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0
Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
{12}{13}{14}{23}{24} {12}{13}{14}{15}{23}{24}
{12}{13}{14}{23}{24}{34} {12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{12}{13}{14}{23}{25}{45}
{12}{13}{14}{25}{35}{45}
{12}{13}{14}{15}{23}{24}{25}
{12}{13}{14}{15}{23}{24}{34}
{12}{13}{14}{15}{23}{24}{35}
{12}{13}{14}{23}{24}{35}{45}
{12}{13}{14}{15}{23}{24}{25}{34}
{12}{13}{14}{15}{23}{24}{35}{45}
{12}{13}{14}{15}{23}{24}{25}{34}{35}
{12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
The complement is counted by
A368834.
A005703 counts unlabeled connected choosable simple graphs, labeled
A129271.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
Cf.
A000088,
A000612,
A006649,
A001434,
A055621,
A137916,
A137917,
A140638,
A368596,
A369141,
A369146.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]
A370315
Number of unlabeled simple graphs with n possibly isolated vertices and up to n edges.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 54, 146, 436, 1372, 4577, 15971, 58376, 221876, 876012, 3583099, 15159817, 66248609, 298678064, 1387677971, 6637246978, 32648574416, 165002122350, 855937433641, 4553114299140, 24813471826280, 138417885372373, 789683693019999, 4603838061688077
Offset: 0
The a(1) = 1 through a(4) = 9 graph edge sets:
{} {} {} {}
{12} {12} {12}
{12-13} {12-13}
{12-13-23} {12-34}
{12-13-14}
{12-13-23}
{12-13-24}
{12-13-14-23}
{12-13-24-34}
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]]],{n,0,5}]
-
a(n) = if(n<=1, n>=0, polcoef(G(n, O(x*x^n))/(1-x),n)) \\ G(n) defined in A008406. - Andrew Howroyd, Feb 20 2024
A368834
Number of unlabeled simple graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 27, 62, 165, 423, 1140, 3060, 8427, 23218, 64782, 181370, 511004, 1444285, 4097996, 11656644, 33243265, 94992847, 271953126, 779790166, 2239187466, 6438039076, 18532004323, 53400606823, 154024168401, 444646510812, 1284682242777
Offset: 0
Representatives of the a(2) = 1 through a(5) = 10 simple graphs:
{12} {12}{13} {12}{34} {12}{13}{45}
{12}{13}{23} {12}{13}{14} {12}{13}{14}{15}
{12}{13}{24} {12}{13}{14}{25}
{12}{13}{14}{23} {12}{13}{23}{45}
{12}{13}{24}{34} {12}{13}{24}{35}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{14}{25}{35}
{12}{13}{24}{35}{45}
The complement is counted by
A369202.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}]
A006648
Number of graphs with n nodes, n-1 edges and no isolated vertices.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 50, 124, 332, 895, 2513, 7172, 20994, 62366, 188696, 578717, 1799999, 5666257, 18047319, 58097540, 188953756, 620493315, 2056582095, 6877206111, 23195975865, 78891742748, 270505303760, 934890953041, 3256230606767
Offset: 2
- W. L. Kocay, Some new methods in reconstruction theory, pp. 89 - 114 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Comments