cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A061132 Number of degree-n even permutations of order dividing 10.

Original entry on oeis.org

1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Examples

			For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10).

A061133 Number of degree-n even permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 210, 5040, 37800, 201600, 2044350, 25530120, 213993780, 1692490800, 19767998250, 232823791200, 2235629476080, 23171222430720, 294649445112750, 4300403589581400, 55176842335916700, 660577269463243440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - 1/2*exp(x + 1/2*x^2) - 1/2*exp(x - 1/2*x^2) - exp(x + 1/3*x^3) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A061135 Number of degree-n even permutations of order exactly 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 9072, 90720, 498960, 25945920, 321080760, 2460970512, 14552417880, 115251776640, 4603779180000, 72193873752000, 681167139805152, 16976210865344640, 304992335584165320, 4548189212204243760
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - 1/2*exp(x + 1/2*x^2) - 1/2*exp(x - 1/2*x^2) - exp(x + 1/5*x^5) + 1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10).

A061129 Number of degree-n even permutations of order dividing 4.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 99856, 475696, 3889216, 31778176, 313696384, 2709911296, 23006784256, 179965340416, 1532217039616, 13081112406784, 147235213351936, 1657791879049216, 20132199908571136, 226466449808367616, 2542933338768769024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2 + x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
    
  • Mathematica
    With[{n=30}, CoefficientList[Series[Exp[x]*Cosh[x^2/2 + x^4/4], {x, 0, n}], x]*Range[0, n]!] (* G. C. Greubel, Jul 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2 + x^4/4) )) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    m = 30; T = taylor(exp(x)*cosh(x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019

Formula

E.g.f.: exp(x)*cosh(x^2/2 + x^4/4).

A053497 Number of degree-n permutations of order dividing 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 721, 5761, 25921, 86401, 237601, 570241, 1235521, 892045441, 13348249201, 106757164801, 604924594561, 2722120577281, 10344007402561, 34479959558401, 24928970490633601, 546446134633639681, 6281586217487489041, 50248618811434961281
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), A293588 (m=6), this sequence (m=7).
Column k=7 of A008307.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 31); Coefficients(R!(Laplace( Exp(x + x^7/7) ))); // G. C. Greubel, May 14 2019, Mar 07 2021
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 7])))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^7/7], {x, 0, 24}], x]*Range[0, 24]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^7/7) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    f=factorial; [sum(f(n)/(7^j*f(j)*f(n-7*j)) for j in (0..n/7)) for n in (0..30)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^7/7).
a(n) = Sum_{k=0..floor(n/7)} n!/(7^k*k!*(n-7*k)!). - G. C. Greubel, Mar 07 2021

A061136 Number of degree-n odd permutations of order dividing 4.

Original entry on oeis.org

0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).

A053499 Number of degree-n permutations of order dividing 9.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 3568144263578808757678251
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Differs from A218003 first at n=27. - Alois P. Heinz, Jan 25 2014

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3 + x^9/9) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 3, 9])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^3/3+x^9/9], {x, 0, 30}], x]*Range[0, 30]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^3/3 + x^9/9) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3 + x^9/9), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^3/3 + x^9/9).

A053502 Number of degree-n permutations of order dividing 12.

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 576, 3312, 21456, 152784, 1237536, 9984096, 133494912, 1412107776, 16369357824, 206123325696, 2866280276736, 36809077162752, 592066290710016, 8800038127378944, 136876273991755776, 2197453620220010496, 37915306084793106432
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 12])))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 12}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^4/4 +x^6/6 + x^12/12], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12).

A061131 Number of degree-n even permutations of order dividing 8.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 326656, 2970496, 33826816, 291237376, 2129910784, 13607197696, 324498374656, 4599593353216, 52741679343616, 495632154179584, 7127212838772736, 94268828128854016, 2098358019107700736, 34030412427789500416
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8))) \\ Michel Marcus, Jun 18 2019

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061140 Number of degree-n odd permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2 + 1/4*x^4) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).
Previous Showing 11-20 of 38 results. Next