cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 479 results. Next

A349346 Dirichlet inverse of A181988, where A181988(n) = A001511(n)*A003602(n).

Original entry on oeis.org

1, -2, -2, 1, -3, 4, -4, 0, -1, 6, -6, -2, -7, 8, 4, 0, -9, 2, -10, -3, 5, 12, -12, 0, -4, 14, -2, -4, -15, -8, -16, 0, 7, 18, 6, -1, -19, 20, 8, 0, -21, -10, -22, -6, 3, 24, -24, 0, -9, 8, 10, -7, -27, 4, 8, 0, 11, 30, -30, 4, -31, 32, 4, 0, 9, -14, -34, -9, 13, -12, -36, 0, -37, 38, 8, -10, 9, -16, -40, 0, -4, 42
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA001511(n) = 1+valuation(n,2);
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A181988(n) = (A001511(n)*A003602(n));
    v349346 = DirInverseCorrect(vector(up_to,n,A181988(n)));
    A349346(n) = v349346[n];

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A181988(n/d) * a(d).
a(n) = A349347(n) - A181988(n).

A349445 Dirichlet convolution of A001511 (the 2-adic valuation of 2n) with A349134 (the Dirichlet inverse of Kimberling's paraphrases).

Original entry on oeis.org

1, 1, -1, 1, -2, -1, -3, 1, -2, -2, -5, -1, -6, -3, 0, 1, -8, -2, -9, -2, 0, -5, -11, -1, -6, -6, -4, -3, -14, 0, -15, 1, 0, -8, 0, -2, -18, -9, 0, -2, -20, 0, -21, -5, 2, -11, -23, -1, -12, -6, 0, -6, -26, -4, 0, -3, 0, -14, -29, 0, -30, -15, 3, 1, 0, 0, -33, -8, 0, 0, -35, -2, -36, -18, 4, -9, 0, 0, -39, -2, -8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Crossrefs

Cf. A001511, A003602, A349134, A349444 (Dirichlet inverse), A349446 (sum with it).
Cf. also A349432, A349448.

Programs

  • Mathematica
    k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, IntegerExponent[2*#, 2]*kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    memoA349134 = Map();
    A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(dA003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));
    A349445(n) = sumdiv(n,d,A001511(n/d)*A349134(d));

Formula

a(n) = Sum_{d|n} A001511(n/d) * A349134(d).
If p odd prime, a(p) = (1-p)/2. - Bernard Schott, Nov 19 2021

A373347 Positive integers k such that A000120(k) > A001511(k).

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Paolo Xausa, Jun 01 2024

Keywords

Comments

Numbers whose binary expansion does not encode for any Schreier set (cf. A371176 and A373345).
All odd numbers > 1 are terms.

Crossrefs

Complement of A371176.
Cf. A000120, A001511, A008466, A373345, A373360 (first differences).

Programs

  • Mathematica
    Select[Range[100], DigitSum[#, 2] > IntegerExponent[#, 2] + 1 &]
  • PARI
    isok(k) = hammingweight(k) > valuation(2*k, 2); \\ Michel Marcus, Jun 07 2024
  • Python
    def isa(n): return (n - 1).bit_count() < ((n.bit_count() - 1) << 1)
    print([n for n in range(100) if isa(n)])  # Peter Luschny, Jun 07 2024
    

Formula

a(k) = 2^(n+1) - 1; a(k+1) = 2^(n+1) + 1, where k = A008466(n+1).

A286253 Compound filter: a(n) = P(A055396(n), A001511(1+n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 8, 1, 9, 1, 25, 1, 5, 1, 26, 1, 27, 1, 17, 1, 35, 1, 53, 1, 5, 1, 75, 1, 9, 1, 8, 1, 65, 1, 131, 1, 5, 1, 13, 1, 90, 1, 12, 1, 104, 1, 134, 1, 5, 1, 186, 1, 14, 1, 8, 1, 152, 1, 18, 1, 5, 1, 188, 1, 189, 1, 30, 1, 9, 1, 229, 1, 5, 1, 273, 1, 252, 1, 8, 1, 14, 1, 347, 1, 5, 1, 323, 1, 9, 1, 12, 1, 324, 1, 19, 1, 5, 1, 31, 1, 350, 1, 8, 1, 377, 1, 462, 1, 5
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
    A286253(n) = (2 + ((A055396(n)+A001511(1+n))^2) - A055396(n) - 3*A001511(1+n))/2;
    for(n=1, 10000, write("b286253.txt", n, " ", A286253(n)));
    
  • Python
    from sympy import primepi, isprime, primefactors
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a055396(n), a001511(n + 1)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286253 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A001511 (+ 1 n))) 2) (- (A055396 n)) (- (* 3 (A001511 (+ 1 n)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A055396(n)+A001511(1+n))^2) - A055396(n) - 3*A001511(1+n)).

A286254 Compound filter: a(n) = P(A001511(n), A055396(1+n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 1, 13, 1, 12, 1, 14, 1, 17, 1, 31, 1, 5, 1, 60, 1, 38, 1, 9, 1, 47, 1, 19, 1, 5, 1, 69, 1, 68, 1, 27, 1, 8, 1, 94, 1, 5, 1, 124, 1, 107, 1, 9, 1, 122, 1, 33, 1, 5, 1, 156, 1, 8, 1, 14, 1, 155, 1, 193, 1, 5, 1, 43, 1, 192, 1, 9, 1, 212, 1, 280, 1, 5, 1, 18, 1, 255, 1, 20, 1, 278, 1, 13, 1, 5, 1, 355, 1, 12, 1, 9, 1, 8, 1, 441, 1, 5, 1, 381, 1, 380, 1, 14
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
    A286254(n) = (2 + ((A001511(n)+A055396(1+n))^2) - A001511(n) - 3*A055396(1+n))/2;
    for(n=1, 10000, write("b286254.txt", n, " ", A286254(n)));
    
  • Python
    from sympy import primepi, isprime, primefactors
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), a055396(n + 1)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286254 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A055396 (+ 1 n))) 2) (- (A001511 n)) (- (* 3 (A055396 (+ 1 n)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A055396(1+n))^2) - A001511(n) - 3*A055396(1+n)).

A318450 Denominators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 4, 1, 2, 8, 2, 2, 4, 2, 2, 2, 8, 2, 16, 2, 2, 4, 2, 1, 4, 2, 4, 8, 2, 2, 4, 2, 2, 4, 2, 2, 16, 2, 2, 2, 8, 8, 4, 2, 2, 16, 4, 2, 4, 2, 2, 4, 2, 2, 16, 1, 4, 4, 2, 2, 4, 4, 2, 8, 2, 2, 16, 2, 4, 4, 2, 2, 128, 2, 2, 4, 4, 2, 4, 2, 2, 16, 4, 2, 4, 2, 4, 2, 2, 8, 16, 8, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A001511, A318449 (numerators), A318451.

Programs

  • Mathematica
    a1511[n_] := IntegerExponent[2n, 2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 65537;
    A001511(n) = 1+valuation(n,2);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
    A318450(n) = denominator(v318449_51[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318451(n).

A324725 a(n) = sign(A324543(n)) * A001511(A324543(n)), with a(n) = 0 if A324543(n) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 4, 5, 1, -1, 1, 3, 1, 5, 1, 4, 1, 3, 3, 1, 1, 2, 1, 4, 3, 5, 3, 3, 1, 2, 2, 6, 1, -2, 1, 1, 1, 6, 1, 4, 1, -1, 2, 1, 1, 3, 1, 3, 2, 2, 1, 2, 1, 5, 3, 4, 4, 1, 1, 1, 3, -4, 1, 3, 1, 3, 1, 1, 3, -1, 1, 4, 5, 5, 1, 1, 2, 4, 2, 4, 1, 1, 1, 1, 7, 5, 2, 7, 1, -2, 1, 2, 1, 1, 1, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

If A324543(n) = 0, then a(n) = 0, otherwise a(n) = sign(A324543(n)) * A001511(A324543(n)).
a(p) = 1 for all primes p.
A324828(n) = [1 == abs(a(n))], where [ ] is the Iverson bracket.

A324882 a(1) = 0; for n > 1, a(n) = A001511(A324866(n)), where A324866(n) = A156552(n) OR (A323243(n) - A156552(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2019

Keywords

Comments

Terms 0 .. k occur for the first time at n = 1, 2, 9, 25, 133, 253, 559, 2159, 2489, 3151, 5597, 7967, ..., which after 2 seem all to be semiprimes, that is, A156552(n) has binary weight 2.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A324866(n) = { my(k=A156552(n)); bitor(k,(A323243(n)-k)); }; \\ Needs also code from A323243.
    A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
    A324882(n) = A001511ext(A324866(n));

Formula

a(1) = 0; for n > 1, a(n) = A001511(A324866(n)).
a(n) = A324884(n) - A324883(n).
a(p) = 1 for all primes p.

A324884 a(1) = 0; for n > 1, a(n) = A001511(A324819(n)), where A324819(n) = 2*A156552(n) OR A323243(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 4, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2019

Keywords

Comments

Terms 0 .. k occur for the first time at n = 1, 2, 4, 9, 85, 133, 451, 1469, 2159, 2489, 4393, 7279, ..., which after 2 seem all to be semiprimes, that is, A156552(n) has binary weight 2.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A324819(n) = bitor(2*A156552(n),A323243(n)); \\ Needs code also from A323243.
    A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
    A324884(n) = A001511ext(A324819(n));

Formula

a(1) = 0; for n > 1, a(n) = A001511(A324819(n)).
a(n) = A324882(n) + A324883(n).
a(p) = 1 for all primes p.

A094290 a(n) = prime(A001511(n)), where A001511 is one more than the 2-adic valuation of n.

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 11, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 13, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 11, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 11, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 13, 2, 3, 2, 5, 2, 3
Offset: 1

Views

Author

Amarnath Murthy, Apr 28 2004

Keywords

Comments

Originally defined as: a(1) = 2 = prime(1). Then the first occurrence of prime(n) followed by all previous terms. i.e. If the index of first occurrence of prime(n) is k then the next k-1 terms are defined as a(k+r) = a(r), r = 1 to k-1. and a(2k) = prime(n+1) and so on.
Index of the first occurrence of prime(n)= 2^(n-1). Subsidiary sequences: If prime(n) is replaced by f(n) a large number of sequences can be obtained choosing f(n) = composite(n), f(n) = n^2,f(n) = n^r, r =3,4,5,..., f(n) = tau(n), f(n) = sigma(n), f(n) = n!, f(n) = Fibonacci(n), f(n) = T(n), triangular number, f(n) = n-th Bell, etc. each giving a distinct fascinating music.
The lexicographically earliest sequence such that no product of consecutive terms is a perfect square. - Joshua Zucker, Apr 30 2011

Crossrefs

Cf. also A115364.

Programs

Formula

a(n) = A000040(A001511(n)). - Omar E. Pol, Sep 13 2013

Extensions

Replaced the name with a formula given by Omar E. Pol, which is equivalent to the original definition. - Antti Karttunen, Nov 02 2018
Previous Showing 31-40 of 479 results. Next