cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-58 of 58 results.

A368726 Number of non-isomorphic connected multiset partitions of weight n into singletons or pairs.

Original entry on oeis.org

1, 1, 3, 3, 8, 10, 26, 38, 93, 161, 381, 732, 1721, 3566, 8369, 18316, 43280, 98401, 234959, 549628, 1327726, 3175670, 7763500, 18905703, 46762513, 115613599, 289185492, 724438500, 1831398264, 4641907993, 11853385002, 30365353560
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 10 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}      {{1},{1,1},{1,1}}
         {{1,2}}    {{2},{1,2}}    {{1,2},{1,2}}      {{1},{1,2},{2,2}}
         {{1},{1}}  {{1},{1},{1}}  {{1,2},{2,2}}      {{2},{1,2},{1,2}}
                                   {{1,3},{2,3}}      {{2},{1,2},{2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{3},{1,3},{2,3}}
                                   {{2},{2},{1,2}}    {{1},{1},{1},{1,1}}
                                   {{1},{1},{1},{1}}  {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

For edges of any size we have A007718.
This is the connected case of A320663.
The case of singletons and strict pairs is A368727, Euler transform A339888.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n], Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]

Formula

Inverse Euler transform of A320663.

A368727 Number of non-isomorphic connected multiset partitions of weight n into singletons or strict pairs.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 15, 21, 49, 82, 184, 341, 766, 1530, 3428, 7249, 16394, 36009, 82492, 186485, 433096, 1001495, 2358182, 5554644, 13255532, 31718030, 76656602, 185982207, 454889643, 1117496012, 2764222322, 6868902152, 17172601190
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 multiset partitions:
  {1}  {12}    {2}{12}    {12}{12}      {2}{12}{12}      {12}{12}{12}
       {1}{1}  {1}{1}{1}  {13}{23}      {2}{13}{23}      {12}{13}{23}
                          {1}{2}{12}    {3}{13}{23}      {13}{23}{23}
                          {2}{2}{12}    {1}{2}{2}{12}    {13}{24}{34}
                          {1}{1}{1}{1}  {2}{2}{2}{12}    {14}{24}{34}
                                        {1}{1}{1}{1}{1}  {1}{2}{12}{12}
                                                         {1}{2}{13}{23}
                                                         {2}{2}{12}{12}
                                                         {2}{2}{13}{23}
                                                         {2}{3}{13}{23}
                                                         {3}{3}{13}{23}
                                                         {1}{1}{2}{2}{12}
                                                         {1}{2}{2}{2}{12}
                                                         {2}{2}{2}{2}{12}
                                                         {1}{1}{1}{1}{1}{1}
		

Crossrefs

For edges of any size we have A056156, with loops A007718.
This is the connected case of A339888.
Allowing loops {x,x} gives A368726, Euler transform A320663.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]

Formula

Inverse Euler transform of A339888.

A144575 E,g.f.: exp(1-sqrt(1-2*x-3*x^2)).

Original entry on oeis.org

1, 1, 5, 25, 217, 2321, 32221, 536425, 10547825, 238451617, 6103391221, 174418724921, 5506024371145, 190282381973425, 7145586497798477, 289733147423281801, 12615792602988127201, 587128127734854278465, 29084008051746449028325, 1527881758843209566647897
Offset: 0

Views

Author

N. J. A. Sloane, Jan 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[1-Sqrt[1-2x-3x^2]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Mar 26 2013 *)

Formula

a(n) ~ 3^(n-1/2)*sqrt(2)*n^(n-1)/exp(n-1). - Vaclav Kotesovec, Jun 02 2013
Conjecture D-finite with recurrence: a(n) +(-2*n+3)*a(n-1) +(-3*n^2+12*n-10)*a(n-2) +3*(-2*n+3)*a(n-3) -9*(n-1)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 24 2020

A144905 a(0) = 1; thereafter a(n) = A105749(n)/n.

Original entry on oeis.org

1, 2, 7, 74, 1596, 58344, 3240840, 254535840, 26862378480, 3667537480320, 629083000385280, 132437508454137600, 33575888768939193600, 10090248381797704243200, 3546915020658948703564800, 1441883923593020355819571200, 671220876625092844683849216000, 354750674999711346878469083136000
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Feb 16 2009

Keywords

Crossrefs

Programs

  • Maple
    B := proc(n, k, M) local i; option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else
    add( binomial(k-1,i)*B(n-1,k-1-i,M),i=0..M-1 );
    end if;
    end proc;
    p:=proc(n,M) add(B(n,k,M),k=0..M*n); end;
    l:=proc(n,M) n!*p(n,M); end;
    [seq(l(n,2)/n,n=1..30)];

A144906 a(0) = 1; thereafter a(n) = A144422(n)/n.

Original entry on oeis.org

1, 3, 31, 1684, 271776, 97484904, 65617109160, 74248657560720, 130752443907524880, 338450307621257099520, 1232284889962378714855680, 6094200542431309662145478400, 39788645361978802435089535468800, 334957784448996146804912925763507200
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Feb 16 2009

Keywords

Crossrefs

A185296 Triangle of connection constants between the falling factorials (x)(n) and (2*x)(n).

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512
Offset: 0

Views

Author

Peter Bala, Feb 20 2011

Keywords

Comments

The falling factorial polynomials (x)_n := x*(x-1)*...*(x-n+1), n = 0,1,2,..., form a basis for the space of polynomials. Hence the polynomial (2*x)_n may be expressed as a linear combination of x_0, x_1,...,x_n; the coefficients in the expansion form the n-th row of the table. Some examples are given below.
This triangle is connected to two families of orthogonal polynomials, the Hermite polynomials H(n,x) A060821, and the Bessel polynomials y(n,x)A001498. The first few Hermite polynomials are
... H(0,x) = 1
... H(1,x) = 2*x
... H(2,x) = -2+4*x^2
... H(3,x) = -12*x+8*x^3
... H(4,x) = 12-48*x^2+16*x^4.
The unsigned coefficients of H(n,x) give the nonzero entries of the n-th row of the triangle.
The Bessel polynomials y(n,x) begin
... y(0,x) = 1
... y(1,x) = 1+x
... y(2,x) = 1+3*x+3*x^2
... y(3,x) = 1+6*x+15*x^2+15*x^3.
The entries in the n-th column of this triangle are the coefficients of the scaled Bessel polynomials 2^n*y(n,x).
Also the Bell transform of g(n) = 2 if n<2 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins
n\k|...0.....1.....2.....3.....4.....5.....6
============================================
0..|...1
1..|...0.....2
2..|...0.....2.....4
3..|...0.....0....12.....8
4..|...0.....0....12....48....16
5..|...0.....0.....0...120...160....32
6..|...0.....0.....0...120...720...480....64
..
Row 3:
(2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1).
Row 4:
(2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) +
48*x*(x-1)*(x-2)+ 12*x*(x-1).
Examples of recurrence relation
T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16;
T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160;
T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720;
T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.

Crossrefs

Cf. A000898 (row sums), A001498, A001515, A059343, A060821.

Programs

  • Maple
    T := (n,k) -> (n!/k!)*binomial(k,n-k)*2^(2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016

Formula

Defining relation: 2*x*(2*x-1)*...*(2*x-n+1) = sum {k=0..n} T(n, k)*x*(x-1)*...*(x-k+1)
Explicit formula: T(n,k) = (n!/k!)*binomial(k,n-k)*2^(2*k-n). [As defined by Comtet (see reference).]
Recurrence relation: T(n,k) = (2*k-n+1)*T(n-1,k)+2*T(n-1,k-1).
E.g.f.: exp(x*(t^2+2*t)) = 1 + (2*x)*t + (2*x+4*x^2)*t^2/2! + (12*x^2+8*x^3)*t^3/3! + ...
O.g.f. for m-th diagonal (starting at main diagonal m = 0): (2*m)!/m!*x^m/(1-2*x)^(2*m+1).
The triangle is the matrix product [2^k*s(n,k)]n,k>=0 * ([s(n,k)]n,k>=0)^(-1),
where s(n,k) denotes the signed Stirling number of the first kind.
Row sums are [1,2,6,20,76,...] = A000898.
Column sums are [1,4,28,296,...] = [2^n*A001515(n)] n>=0.

A305536 Expansion of 1/(1 - x/(1 - x - 1*x/(1 - x - 2*x/(1 - x - 3*x/(1 - x - 4*x/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 12, 62, 410, 3426, 35360, 438390, 6358306, 105544388, 1970997142, 40860191470, 930482058472, 23079257369054, 619157277351618, 17860295754328884, 551188620179519302, 18119420989759583998, 632069815329176122584, 23318435171385786420958, 907077442499274638005314
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2018

Keywords

Comments

Invert transform of A001515, shifted right one place.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n<2, n+1, (2*n-1)*b(n-1)+b(n-2))
        end:
    a:= proc(n) option remember;
         `if`(n=0, 1, add(b(j-1)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 11 2023
  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-k x, 1 - x, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[1/(1 - Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

a(n) ~ 2^(n - 1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Sep 18 2021

A305537 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x*A(x)/(1 - x*A(x) - 2*x*A(x)/(1 - x*A(x) - 3*x*A(x)/(1 - x*A(x) - 4*x*A(x)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 2, 11, 87, 844, 9438, 118217, 1636078, 24869591, 414422424, 7568815758, 151468591827, 3317061005044, 79265498450882, 2058189152006115, 57777549430984983, 1744191365957251044, 56332730020388347302, 1937412176139535240463, 70659708678402399722656
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2018

Keywords

Examples

			G.f. A(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 844*x^4 + 9438*x^5 + 118217*x^6 + 1636078*x^7 + 24869591*x^8 + ...
		

Crossrefs

Formula

a(n) = [x^n] (Sum_{k>=0} A001515(k)*x^k)^(n+1)/(n + 1).
Previous Showing 51-58 of 58 results.