cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 114 results. Next

A349155 Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.

Original entry on oeis.org

0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.

Examples

			The terms and corresponding compositions begin:
     0: ()
     9: (3,1)
   130: (6,2)
   135: (5,1,1,1)
   141: (4,1,2,1)
   153: (3,1,3,1)
   177: (2,1,4,1)
   193: (1,6,1)
   225: (1,1,5,1)
  2052: (9,3)
  2059: (8,2,1,1)
  2062: (8,1,1,2)
  2069: (7,2,2,1)
  2074: (7,1,2,2)
  2079: (7,1,1,1,1,1)
  2089: (6,2,3,1)
  2098: (6,1,3,2)
  2103: (6,1,2,1,1,1)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
An unordered version is A348617, counted by A001523 up to 0's.
The positive version is A349153, unreversed A348614.
The unreversed version is A349154.
Positive unordered unreversed: A349159, counted by A000712 up to 0's.
A positive unordered version is A349160, counted by A006330 up to 0's.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- Heinz number is given by A333219.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]

A238872 Number of strongly unimodal compositions of n with absolute difference of successive parts = 1.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 3, 4, 3, 6, 4, 3, 5, 6, 4, 9, 5, 3, 7, 7, 5, 9, 6, 6, 8, 9, 5, 9, 8, 6, 10, 6, 5, 15, 8, 9, 10, 7, 7, 12, 10, 3, 11, 15, 7, 15, 8, 6, 13, 12, 9, 12, 9, 9, 14, 12, 7, 15, 12, 6, 15, 13, 6, 21, 12, 12, 13, 6, 11, 15, 15, 9, 14, 12, 8, 24, 10, 9
Offset: 0

Views

Author

Joerg Arndt, Mar 21 2014

Keywords

Examples

			The a(33) = 15 such compositions of 33 are:
01:  [ 1 2 3 4 5 6 5 4 3 ]
02:  [ 2 3 4 5 6 7 6 ]
03:  [ 3 4 5 6 5 4 3 2 1 ]
04:  [ 3 4 5 6 7 8 ]
05:  [ 4 5 6 7 6 5 ]
06:  [ 5 6 7 6 5 4 ]
07:  [ 5 6 7 8 7 ]
08:  [ 6 7 6 5 4 3 2 ]
09:  [ 7 8 7 6 5 ]
10:  [ 8 7 6 5 4 3 ]
11:  [ 10 11 12 ]
12:  [ 12 11 10 ]
13:  [ 16 17 ]
14:  [ 17 16 ]
15:  [ 33 ]
G.f. = 1 + x + x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 3*x^8 + 6*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 1, 1/3] Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9]]; (* Michael Somos, Jul 04 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 + (x - x^2 + z - z^2) / 2 == n}, {x, y, z}, Integers, 10^9]]; (* Michael Somos, Jul 04 2015 *)
  • PARI
    \\ generate the compositions
    a(n)=
    {
        if ( n==0, return(1) );
        my( ret=0 );
        my( as, ts );
        for (f=1, n,  \\ first part
            as = 0;
            for (p=f, n, \\ numper of parts in rising half
                as += p; \\ ascending sum
                if ( as > n, break() );
                if ( as == n,  ret+=1;  break() );
                ts = as;  \\ total sum
                forstep (q=p-1, 1, -1,
                    ts += q;  \\ descending sum
                    if ( ts > n, break() );
                    if ( ts == n,  ret+=1;  break() );
                );
            );
        );
        return( ret );
    }
    v=vector(100,n,a(n-1))

Formula

a(2*n) = A130695(2*n) / 3 if n>0. a(2*n + 1) = A130695(2*n + 1) = 3 * H(8*n + 3), where H is the Hurwitz class number, if n>0. - Michael Somos, Jul 04 2015

A242771 Number of integer points in a certain quadrilateral scaled by a factor of n (another version).

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 14, 19, 25, 32, 40, 48, 58, 68, 79, 91, 104, 117, 132, 147, 163, 180, 198, 216, 236, 256, 277, 299, 322, 345, 370, 395, 421, 448, 476, 504, 534, 564, 595, 627, 660, 693, 728, 763, 799, 836, 874, 912, 952, 992, 1033, 1075, 1118, 1161, 1206
Offset: 1

Views

Author

Michael Somos, May 22 2014

Keywords

Comments

The quadrilateral is given by four vertices [(1/2, 1/3), (0, 1), (0, 0), (1, 0)] as an example on page 22 of Ehrhart 1967. Here the open line segment from (1/2, 1/3) to (0, 1) is included but the rest of the boundary is not. The sequence is denoted by d'(n).
From Gus Wiseman, Oct 18 2020: (Start)
Also the number of ordered triples of positive integers summing to n that are not strictly increasing. For example, the a(3) = 1 through a(7) = 14 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,3,2) (1,3,3)
(2,1,1) (1,3,1) (1,4,1) (1,4,2)
(2,1,2) (2,1,3) (1,5,1)
(2,2,1) (2,2,2) (2,1,4)
(3,1,1) (2,3,1) (2,2,3)
(3,1,2) (2,3,2)
(3,2,1) (2,4,1)
(4,1,1) (3,1,3)
(3,2,2)
(3,3,1)
(4,1,2)
(4,2,1)
(5,1,1)
A001399(n-6) counts the complement (unordered strict triples).
A014311 \ A333255 ranks these compositions.
A140106 is the unordered version.
A337484 is the case not strictly decreasing either.
A337698 counts these compositions of any length, with complement A000009.
A001399(n-6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A337483 counts triples either weakly increasing or weakly decreasing.
(End)

Examples

			G.f. = x^3 + 3*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 19*x^8 + 25*x^9 + 32*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [Floor((5*n-7)*(n-1)/12): n in [1..60]]; // Vincenzo Librandi, Jun 27 2015
  • Mathematica
    a[ n_] := Quotient[ 7 - 12 n + 5 n^2, 12];
    a[ n_] := With[ {o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, Length @ FindInstance[ 0 < c + x && 0 < c + y && (2 x < c + m && 4 x + 3 y < o + 3 m || m < o + 2 x && 2 x + 3 y < c + 2 m), {x, y}, Integers, 10^9]];
    LinearRecurrence[{1,1,0,-1,-1,1},{0,0,1,3,6,9},90] (* Harvey P. Dale, May 28 2015 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)
  • PARI
    {a(n) = (7 - 12*n + 5*n^2) \ 12};
    
  • PARI
    {a(n) = if( n<0, polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))};
    

Formula

G.f.: x^3 * (1 + 2*x + 2*x^2) / (1 - x - x^2 + x^4 + x^5 - x^6) = (x^3 + x^4 + x^5 + 2*x^7) / ((1 - x)^2 * (1 - x^6)).
a(n) = floor( A147874(n) / 12).
a(-n) = A002789(n).
a(n+1) - a(n) = A010761(n).
For n >= 6, a(n) = A000217(n-2) - A001399(n-6). - Gus Wiseman, Oct 18 2020

A333146 Number of non-unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 7, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 12, 24, 36, 60, 72, 90, 96:
  (121)  (1121)  (1212)  (1132)  (11212)  (1232)  (111121)
         (1211)  (1221)  (1213)  (11221)  (1322)  (111211)
                 (2121)  (1231)  (12112)  (2132)  (112111)
                         (1312)  (12121)  (2231)  (121111)
                         (1321)  (12211)  (2312)
                         (2131)  (21121)  (2321)
                         (2311)  (21211)
                         (3121)
		

Crossrefs

Dominated by A008480.
The non-negated version is A332671.
A more interesting version is A332742.
The complement is counted by A333145.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Compositions whose negation is unimodal are A332578.
Partitions with unimodal negated run-lengths are A332638.
Numbers with non-unimodal negated unsorted prime signature are A332642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],!unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333145(n) = A008480(n).

A335374 Numbers k such that the k-th composition in standard order (A066099) is not co-unimodal.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is co-unimodal if it is the concatenation of a weakly decreasing and a weakly increasing sequence, implying that its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  81: (2,4,1)
  82: (2,3,2)
  83: (2,3,1,1)
  89: (2,1,3,1)
		

Crossrefs

This is the dual version of A335373.
The case that is not unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[-stc[#]]&]

A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      7: (1,1,1)     52: (1,2,3)    133: (5,2,1)
     11: (2,1,1)     56: (1,1,4)    137: (4,3,1)
     13: (1,2,1)     67: (5,1,1)    138: (4,2,2)
     14: (1,1,2)     69: (4,2,1)    145: (3,4,1)
     19: (3,1,1)     73: (3,3,1)    146: (3,3,2)
     21: (2,2,1)     74: (3,2,2)    161: (2,5,1)
     25: (1,3,1)     81: (2,4,1)    162: (2,4,2)
     26: (1,2,2)     82: (2,3,2)    164: (2,3,3)
     28: (1,1,3)     84: (2,2,3)    168: (2,2,4)
     35: (4,1,1)     97: (1,5,1)    193: (1,6,1)
     37: (3,2,1)     98: (1,4,2)    194: (1,5,2)
     41: (2,3,1)    100: (1,3,3)    196: (1,4,3)
     42: (2,2,2)    104: (1,2,4)    200: (1,3,4)
     49: (1,4,1)    112: (1,1,5)    208: (1,2,5)
     50: (1,3,2)    131: (6,1,1)    224: (1,1,6)
		

Crossrefs

A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts strict 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311, with strict case A337453.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Complement of A335373 in A014311.

A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple.

Original entry on oeis.org

22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Comments

These are triples matching the pattern (2,1,2), (3,1,2), or (2,1,3).
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      22: (2,1,2)     296: (3,2,4)    1048: (6,1,4)
      38: (3,1,2)     304: (3,1,5)    1064: (5,2,4)
      44: (2,1,3)     352: (2,1,6)    1072: (5,1,5)
      70: (4,1,2)     518: (7,1,2)    1096: (4,3,4)
      76: (3,1,3)     524: (6,1,3)    1104: (4,2,5)
      88: (2,1,4)     532: (5,2,3)    1120: (4,1,6)
     134: (5,1,2)     536: (5,1,4)    1184: (3,2,6)
     140: (4,1,3)     552: (4,2,4)    1216: (3,1,7)
     148: (3,2,3)     560: (4,1,5)    1408: (2,1,8)
     152: (3,1,4)     592: (3,2,5)    2054: (9,1,2)
     176: (2,1,5)     608: (3,1,6)    2060: (8,1,3)
     262: (6,1,2)     704: (2,1,7)    2068: (7,2,3)
     268: (5,1,3)    1030: (8,1,2)    2072: (7,1,4)
     276: (4,2,3)    1036: (7,1,3)    2088: (6,2,4)
     280: (4,1,4)    1044: (6,2,3)    2096: (6,1,5)
		

Crossrefs

A000212 counts unimodal triples.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
A337459 ranks unimodal triples.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
- Strict triples are A337453.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Intersection of A014311 and A335373.

A348617 Numbers whose sum of prime indices is twice their negated alternating sum.

Original entry on oeis.org

1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their negated alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    10: (3,1)
    39: (6,2)
    88: (5,1,1,1)
   115: (9,3)
   228: (8,2,1,1)
   259: (12,4)
   306: (7,2,2,1)
   517: (15,5)
   544: (7,1,1,1,1,1)
   620: (11,3,1,1)
   783: (10,2,2,2)
   793: (18,6)
   870: (10,3,2,1)
  1150: (9,3,3,1)
  1204: (14,4,1,1)
  1241: (21,7)
  1392: (10,2,1,1,1,1)
  1656: (9,2,2,1,1,1)
  1691: (24,8)
		

Crossrefs

These partitions are counted by A001523 up to 0's.
An ordered version is A349154, nonnegative A348614, reverse A349155.
The nonnegative version is A349159, counted by A000712 up to 0's.
The reverse nonnegative version is A349160, counted by A006330 up to 0's.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]

Formula

A056239(a(n)) = -2*A316524(a(n)).
A346698(a(n)) = 3*A346697(a(n)).

A349154 Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.

Original entry on oeis.org

0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms and corresponding compositions begin:
       0: ()
      12: (1,3)
     160: (2,6)
     193: (1,6,1)
     195: (1,5,1,1)
     198: (1,4,1,2)
     204: (1,3,1,3)
     216: (1,2,1,4)
     240: (1,1,1,5)
    2304: (3,9)
    2561: (2,9,1)
    2563: (2,8,1,1)
    2566: (2,7,1,2)
    2572: (2,6,1,3)
    2584: (2,5,1,4)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
Except for 0, a subset of A345919.
The positive version is A348614, reverse A349153.
An unordered version is A348617, counted by A001523.
The reverse version is A349155.
A positive unordered version is A349159, counted by A000712 up to 0's.
A000346 = even-length compositions with alt sum != 0, complement A001700.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Necklaces are ranked by A065609, dual A333764, reversed A333943.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]

A054250 Triangular array T(n,0)= 1, T(n,k) = sum_{j=1..min(n,k)} (n-j+1)*T(j,k-j) if k>0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 8, 1, 4, 7, 12, 20, 1, 5, 9, 16, 28, 45, 1, 6, 11, 20, 36, 60, 95, 1, 7, 13, 24, 44, 75, 122, 191, 1, 8, 15, 28, 52, 90, 149, 238, 365, 1, 9, 17, 32, 60, 105, 176, 285, 444, 676, 1, 10, 19, 36, 68, 120, 203, 332, 523, 806, 1211
Offset: 0

Views

Author

N. J. A. Sloane, May 06 2000

Keywords

Examples

			1; 1,1; 1,2,3; 1,3,5,8; 1,4,7,12,20; ...
		

Crossrefs

Used in A001523.

Programs

  • Maple
    A054250 := proc(n,k) option remember; local j; if k = 0 then RETURN(1) else add( (n-j+1)*A054250(j,k-j), j=1..min(n,k) ); fi; end;
Previous Showing 91-100 of 114 results. Next