cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 372 results. Next

A371760 a(n) is the smallest number k such that the k-th n-gonal number is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.

Original entry on oeis.org

33, 1093, 73, 17, 97, 11, 193, 17, 89, 11, 193, 73, 673, 13, 257, 33, 41, 15, 97, 65, 1009, 13, 97, 149, 190, 23, 401, 41, 281, 31, 133, 17, 1033, 31, 89, 13, 6, 59, 241, 157, 1217, 91, 145, 37, 937, 29, 1289, 73, 97, 41, 617, 19, 137, 151, 34, 103, 8641, 47, 82
Offset: 3

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

The corresponding pseudoprimes are in A371759.

Crossrefs

Programs

  • Mathematica
    p[k_, n_] := ((n - 2)*k^2 - (n - 4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; k]; Array[a, 100, 3]
  • PARI
    p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
    ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
    a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); k;}

A172255 Partial sums of the Fermat pseudoprimes to base 2, A001567.

Original entry on oeis.org

341, 902, 1547, 2652, 4039, 5768, 7673, 9720, 12185, 14886, 17707, 20984, 25017, 29386, 33757, 38438, 43899, 50500, 58457, 66778, 75259, 84170, 94431, 105016, 116321, 129122, 142863, 156610, 170591, 185082, 200791, 216632, 233337, 252042
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2010

Keywords

Comments

The subsequence of pseudoprimes in this sequence begins 341; the next term exceeds a(10000) if it exists. - Charles R Greathouse IV, Aug 22 2012
The subsequence of primes in the sequence begins 7673, 17707, 33757, 270763, 484621.

Examples

			a(15) = 341 + 561 + 645 + 1105 + 1387 + 1729 + 1905 + 2047 + 2465 + 2701 + 2821 + 3277 + 4033 + 4369 + 4371 = 33757 is prime.
		

Crossrefs

Programs

  • PARI
    sums(v)=my(s); vector(#v,i, s+=v[i])
    sums(select(n->Mod(2, n)^n==2 & !isprime(n), vector(10^5,n,2*n+1))) \\ Charles R Greathouse IV, Jul 09 2015

Formula

a(n) = Sum_{i=1..n, odd composite numbers n such that 2^(n-1) == 1 mod n}.

A216404 a(n) = lcm((d1 + 1), (d2 + 1), ..., (dk + 1)), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2, A001567(n).

Original entry on oeis.org

96, 36, 132, 126, 740, 280, 384, 360, 90, 1406, 224, 570, 2090, 774, 96, 608, 1408, 168, 4070, 4266, 516, 680, 2656, 1110, 360, 252, 1064, 2340, 672, 7436, 1368, 1184, 1806, 660, 9506, 3384, 252, 11858, 4448, 8246, 4648, 720, 5310, 16058, 8008, 5676, 3630, 17910
Offset: 1

Views

Author

Marius Coman, Sep 06 2012

Keywords

Comments

It is notable how many primes are obtained if we add or subtract 1 from these numbers.
Primes obtained by adding 1 and the corresponding Fermat pseudoprime in the brackets: 97(341), 37(561), 127(1105), 281(1729), 571(3277), 97(4371), 1409(5461), 2657(10261), 2341(13747), 673(13981), 661(18705), 46499(30121), 8009(31621), 3631(34945), 17911(35333).
Primes obtained by subtracting 1 and the corresponding Fermat pseudoprime in the brackets: 131(645), 739(1387), 383(1905), 359(2047), 89(2465), 223(2821), 569(3277), 2089(4033), 773(4369), 607(4681), 167(6601), 1109(10585), 359(11305), 251(12801), 1063(13741), 2339(13747), 1367(15709), 659(18705), 251(23001), 4447(25761), 719(30889), 5309(31417), 160479(31609), 17909(35333).
Numbers from sequence which do not lead to a prime number adding or subtracting 1 (and the corresponding Fermat pseudoprimes to base 2 in the bracketts): 1406(2701), 4070(7957), 4266(8321), 516(8481), 680(8911), 7436(14491), 1184(15841), 1806(16705), 9506(18721), 3384(19951), 11858(23377), 8246(29341), 5676(33153). Interesting analogies can be found between these "exceptions": subtracting 1 from the ones of the form 10*k + 6 often yields semiprimes, etc.
There are probably many other interesting utilities for the function from the sequence above as for the function a(n) = lcm(d1-1, d2-1, ..., dk-1), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2 A001567(n).

Crossrefs

Cf. A001567.

A242276 Irregular array of factors of n-th Poulet number read by rows, where row n corresponds to A001567(n).

Original entry on oeis.org

11, 31, 3, 11, 17, 3, 5, 43, 5, 13, 17, 19, 73, 7, 13, 19, 3, 5, 127, 23, 89, 5, 17, 29, 37, 73, 7, 13, 31, 29, 113, 37, 109, 17, 257, 3, 31, 47, 31, 151, 43, 127, 7, 23, 41, 73, 109, 53, 157, 3, 11, 257, 7, 19, 67, 31, 331, 5, 29, 73, 5, 7, 17, 19, 3, 17, 251, 7, 13, 151, 59, 233, 11, 31, 41, 43, 337, 23, 683, 7, 31, 73, 5, 13
Offset: 1

Views

Author

Felix Fröhlich, Aug 16 2014

Keywords

Examples

			The first three Poulet numbers (2-pseudoprimes) are 341 = 11*31, 561 = 3*11*17, and 645 = 3*5*43, so the sequence begins:
11, 31;
3, 11, 17;
3, 5, 43;
etc.
		

Crossrefs

Programs

  • PARI
    forcomposite(n=1, 1e4, if(Mod(2, n)^(n-1)==1, f=factor(n)[, 1]; for(i=1, #f, print1(f[i], ", "))))

A265653 Integers k such that (k-1)^3 + 1 is a Fermat pseudoprime to base 2 (A001567).

Original entry on oeis.org

13, 37, 139, 271, 547, 4801, 7561, 12841, 14701, 358201, 678481, 16139971, 22934101, 55058581, 59553721, 74371321, 113068381, 116605861, 242699311, 997521211, 1592680321, 1652749201, 3190927741, 5088964801, 6974736757, 9214178821
Offset: 1

Views

Author

Altug Alkan, Dec 12 2015

Keywords

Comments

Corresponding Fermat pseudoprimes to base 2 are 1729, 46657, 2628073, 19683001, 162771337, 110592000001, 432081216001, ...
There is only one composite term up to 10^10: 14701. It also appears in A265628 (see comments). Can we say that if there is a Fermat pseudoprime to base 2 of the form (k-1)^3 + 1, k is a prime number most of the time? Are there other composite terms like 14701?

Examples

			13 is a term because (13-1)^3 + 1 = 1729, which is a Fermat pseudoprime to base 2.
37 is a term because (37-1)^3 + 1 = 46657, which is a Fermat pseudoprime to base 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], ! PrimeQ@ # && PowerMod[2, (# - 1), #] == 1 &@((# - 1)^3 + 1) &] (* Michael De Vlieger, Dec 12 2015, after Farideh Firoozbakht at A001567 *)
  • PARI
    is(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1};
    for(n=1, 1e10, if(is((n-1)^3+1), print1(n, ", ")));

Formula

a(n) = A270840(n) + 1.

A265684 Sarrus numbers (A001567) that are the average of two consecutive primes.

Original entry on oeis.org

645, 7957, 11305, 15841, 25761, 35333, 126217, 194221, 212421, 332949, 464185, 635401, 656601, 741751, 934021, 1193221, 1357441, 1459927, 1620385, 1690501, 1969417, 2704801, 3911197, 4154161, 4209661, 5095177, 5284333, 5351537, 5758273, 6189121, 6212361, 7820201, 8134561, 8209657
Offset: 1

Views

Author

Altug Alkan, Dec 13 2015

Keywords

Comments

Inspired by A265669.
Motivation was the form of differences between consecutive primes that generate this sequence. It seems that 12*k appears in differences most of the time. For the first 175 term of this sequence, the relevant proportion is 161/175.
Differences between corresponding consecutive primes are 4, 12, 12, 36, 4, 12, 12, 36, 4, 4, 24, 24, 4, 60, 24, 24, 24, 12, 12, 36, 12, 24, 12, 24, 36, 12, 12, 12, 12, 24, 4, 60, 24, 48, 36, 12, 24, 36, 24, 20, 12, 84, 36, 12, 24, 24, 12, 24, 36, 12, 12, 36, ...

Examples

			645 is a term because it is a Sarrus number and the average of the consecutive primes 643 and 647.
7957 is a term because it is a Sarrus number and the average of the consecutive primes 7951 and 7963.
		

Crossrefs

Intersection of A001567 and A024675.
Cf. A265669.

Programs

  • Mathematica
    Select[Range[200000], CompositeQ[#] && PowerMod[2, (# - 1), #] == 1 && NextPrime[#] - # == # - NextPrime[#, -1] &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    is(n)={Mod(2, n)^n==2 && !isprime(n)}
    forcomposite(n=2, 1e7, if(is(n) && (nextprime(n)-n)==(n-precprime(n)), print1(n, ", ")))

A270639 Fermat pseudoprimes (A001567) that are the sum of three consecutive primes.

Original entry on oeis.org

13741, 16705, 150851, 208465, 249841, 252601, 258511, 410041, 486737, 635401, 1052503, 1082401, 1457773, 1507963, 1579249, 1615681, 2113921, 2184571, 3090091, 3375487, 3726541, 4682833, 4895065, 5044033, 5133201, 6233977, 6255341, 6350941, 6474691, 6912079, 7259161
Offset: 1

Views

Author

Altug Alkan, Mar 20 2016

Keywords

Comments

In other words, Fermat pseudoprimes to base 2 of the form p + q + r where p, q and r are consecutive primes.
If a Fermat pseudoprime is the sum of n consecutive primes, it is so obvious that the minimum value of n is 3.
Intersection of A001567 and A034961.

Examples

			4567, 4583 and 4591 are consecutive primes and their sum is 13741, a Fermat pseudoprime.
84191, 84199 and 84211 are consecutive primes and their sum is 252601, a Fermat pseudoprime.
		

Crossrefs

Programs

  • PARI
    isA001567(n) = {Mod(2, n)^n==2 && !ispseudoprime(n) && n > 1}
    a034961(n) = my(p=prime(n), q=nextprime(p+1)); p+q+nextprime(q+1);
    for(n=1, 200000, if(isA001567(a034961(n)), print1(a034961(n), ", ")));

A273471 Primes p such that at least one of 1093*p or 1093*p^2 is a Poulet number, i.e., a term of A001567.

Original entry on oeis.org

1093, 4733, 21841, 503413, 1948129, 112901153, 23140471537, 467811806281, 4093204977277417, 8861085190774909, 556338525912325157, 86977595801949844993, 275700717951546566946854497, 3194753987813988499397428643895659569
Offset: 1

Views

Author

Felix Fröhlich, May 23 2016

Keywords

Comments

The prime factors of 2^1092-1 that are congruent to 1 modulo 364 (the multiplicative order of 2 modulo 1093). - Max Alekseyev, Aug 30 2016

Crossrefs

Programs

  • PARI
    forprime(p=1, , if(Mod(2, 1093*p)^(1093*p-1)==1 || Mod(2, 1093*p^2)^(1093*p^2-1)==1, print1(p, ", ")))

A273472 Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.

Original entry on oeis.org

3511, 10531, 1024921, 1969111, 4633201, 409251961, 21497866557571, 194900834792501371, 4242734772486358591, 85488365519409100951, 255375215316698521591, 1439538040790707946401, 5302306226370307681801, 2728334536034592865339299805712535332071, 1514527568177848809210967221069334182785475908756709327091, 559791068131697034376217936561708451475280017605178661418575551, 656640320787712008058581244241126148909602076298405712103045387152988908318802087128873347971063698441918022286945981375193401, 25006596829256741460214169653933852849128490077459890197421900490545433220443136638425782879171530372521984642165350019685875922245867185516694881
Offset: 1

Views

Author

Felix Fröhlich, May 23 2016

Keywords

Comments

The prime factors of 2^3510-1 that are congruent to 1 modulo 1755 (the multiplicative order of 2 modulo 3511). - Max Alekseyev, Aug 30 2016

Crossrefs

Programs

  • PARI
    forprime(p=1, , if(Mod(2, 3511*p)^(3511*p-1)==1 || Mod(2, 3511*p^2)^(3511*p^2-1)==1, print1(p, ", ")))

Extensions

Terms a(8) onward from Max Alekseyev, Aug 30 2016

A291617 Numbers p_1*p_2*...*p_k such that (2^p_1-1)*(2^p_2-1)*...*(2^p_k-1) is a Poulet number (A001567), where p_i are primes and k >= 2.

Original entry on oeis.org

230, 341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31323, 31417, 31609, 31621, 35333, 38193, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Rotkiewicz (1965) proved that (2^p-1)*(2^q-1) is a Poulet number if and only if p*q is a Poulet number, where p,q are distinct primes. It follows that this sequence contains all nonsquare terms in A214305.
Generally, the sequence includes all squarefree super-Poulet numbers.
The terms n = 230, 31323, 38193, ... are not in A050217. Are there infinitely many such terms?

Examples

			The number n = 341 = 11*31 is a term, because m = (2^11-1)*(2^31-1) = 4395899025409 is a Poulet number.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[10^4], CompositeQ@ # && SquareFreeQ@ # &], ! PrimeQ[#] && PowerMod[2, (# - 1), #] == 1 &@ Apply[Times, Map[2^# - 1 &, FactorInteger[#][[All, 1]] ]] &] (* Michael De Vlieger, Aug 30 2017 *)
  • PARI
    { is_A291617(n) = my(p,m); if(isprime(n),return(0)); p=factor(n); m=prod(i=1,matsize(p)[1], (2^p[i,1]-1)^p[i,2]); Mod(2,m)^m==2; }
Previous Showing 21-30 of 372 results. Next