1, 1, 7, 95, 1969, 55201, 1956375, 83935039, 4230528353, 245059707841, 16043680004903, 1171567218325151, 94415150206330641, 8323801562833775201, 796927800013656980791, 82342529545666235490431, 9132868398860301753027265, 1082287792241161814647419265
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 95*x^3/3! + 1969*x^4/4! + 55201*x^5/5! +...
where
1/(cos(x)-sin(x)) = 1 + x + 3*x^2/2! + 11*x^3/3! + 57*x^4/4! + 361*x^5/5! + 2763*x^6/6! + 24611*x^7/7! +...+ A001586(n)*x^n/n! +...
The coefficients of x^n/n! in odd powers of G(x) = 1/(cos(x)-sin(x)) begin:
G^1: [(1), 1, 3, 11, 57, 361, 2763, 24611, ..., A001586(n), ...];
G^3: [1,(3), 15, 93, 705, 6243, 63375, 724413, ...];
G^5: [1, 5,(35), 295, 2905, 32525, 407435, 5638495, ...];
G^7: [1, 7, 63,(665), 8001, 107527, 1592703, 25738265, ...];
G^9: [1, 9, 99, 1251, (17721), 276849, 4716459, 86873211, ...];
G^11:[1, 11, 143, 2101, 34177, (607211), 11668943, 240764821, ...];
G^13:[1, 13, 195, 3263, 59865, 1190293,(25432875), 580193783, ...];
G^15:[1, 15, 255, 4785, 97665, 2146575, 50429055,(1259025585), ...]; ...
where coefficients in parenthesis form the initial terms of this sequence:
[1/1, 3/3, 35/5, 665/7, 17721/9, 607211/11, 25432875/13, 1259025585/15, ...].
Comments