cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-55 of 55 results.

A385421 Expansion of e.g.f. 1/(1 - arcsin(2*x))^(1/2).

Original entry on oeis.org

1, 1, 3, 19, 153, 1689, 21867, 343995, 6114993, 124933425, 2820098643, 70897706595, 1939085791305, 57898697121225, 1859540697970875, 64312039377723915, 2371651908598754145, 93246340110716523105, 3882169166979871734435, 171024539858087082582195
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(2*x))^(1/2)))

Formula

a(n) = Sum_{k=0..n} A001147(k) * 2^(n-k) * A385343(n,k).
a(n) ~ sqrt(sin(2)) * 2^n * n^n / (exp(n) * sin(1)^(n+1)). - Vaclav Kotesovec, Jun 28 2025

A201990 E.g.f. satisfies: A(x) = 1/(cos(x*A(x)^2) - sin(x*A(x)^2)).

Original entry on oeis.org

1, 1, 7, 95, 1969, 55201, 1956375, 83935039, 4230528353, 245059707841, 16043680004903, 1171567218325151, 94415150206330641, 8323801562833775201, 796927800013656980791, 82342529545666235490431, 9132868398860301753027265, 1082287792241161814647419265
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2011

Keywords

Comments

Compare e.g.f. to: Sum_{n>=0} (2*n+1)^(n-1)*x^n/n! = sqrt((1/x)*Series_Reversion(x*(cosh(x) - sinh(x))^2)).
The radius of convergence r of e.g.f. A(x) is given by:
r = t*(cos(t) - sin(t))^2 where t = (1 - sin(2*t))/(2*cos(2*t)), so that:
r = 0.13127 35638 55724 99317 13322 82818 86189 50670 52604 32023 ...
t = 0.27798 42153 59698 32056 15352 87789 00442 74782 64480 84947 ...
Further, A(r) = 1/(cos(t) - sin(t)), thus
A(r) = 1.45519 57921 91350 02891 97122 64456 17664 48847 98244 19461 ...

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 95*x^3/3! + 1969*x^4/4! + 55201*x^5/5! +...
where
1/(cos(x)-sin(x)) = 1 + x + 3*x^2/2! + 11*x^3/3! + 57*x^4/4! + 361*x^5/5! + 2763*x^6/6! + 24611*x^7/7! +...+ A001586(n)*x^n/n! +...
The coefficients of x^n/n! in odd powers of G(x) = 1/(cos(x)-sin(x)) begin:
G^1: [(1), 1, 3, 11, 57, 361, 2763, 24611, ..., A001586(n), ...];
G^3: [1,(3), 15, 93, 705, 6243, 63375, 724413, ...];
G^5: [1, 5,(35), 295, 2905, 32525, 407435, 5638495, ...];
G^7: [1, 7, 63,(665), 8001, 107527, 1592703, 25738265, ...];
G^9: [1, 9, 99, 1251, (17721), 276849, 4716459, 86873211, ...];
G^11:[1, 11, 143, 2101, 34177, (607211), 11668943, 240764821, ...];
G^13:[1, 13, 195, 3263, 59865, 1190293,(25432875), 580193783, ...];
G^15:[1, 15, 255, 4785, 97665, 2146575, 50429055,(1259025585), ...]; ...
where coefficients in parenthesis form the initial terms of this sequence:
[1/1, 3/3, 35/5, 665/7, 17721/9, 607211/11, 25432875/13, 1259025585/15, ...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(Cos[x] - Sin[x])^2, {x, 0, 21}], x]],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 12 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));n!*polcoeff(sqrt(1/x*serreverse(x*(cos(X)-sin(X))^2)),n)}
    
  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));for(i=1,n,A=1/(cos(X*A^2) - sin(X*A^2)));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n),A001586=1/(cos(X)-sin(X)));n!*polcoeff(A001586^(2*n+1),n)/(2*n+1)}

Formula

E.g.f. satisfies: A( x*(cos(x) - sin(x))^2 ) = 1/(cos(x) - sin(x)).
E.g.f: sqrt( (1/x) * Series_Reversion( x*(cos(x) - sin(x))^2 ) ).
a(n) = [x^n/n!] 1/(cos(x)-sin(x))^(2*n+1) / (2*n+1).
a(n) ~ sqrt((t*cos(2*t))/(2*cos(2*t)+4*t*(3+sin(2*t)))) * n^(n-1) / (exp(n) * r^(n+1/2)), where r and t were described above. - Vaclav Kotesovec, Jan 12 2014

A335335 Irregular triangle T(n,k) of Arnold numbers with n>=1 and 1<= abs(k) <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 0, 2, 3, 3, 4, 4, 0, 4, 8, 11, 11, 14, 16, 16, 0, 16, 32, 46, 57, 57, 68, 76, 80, 80, 0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512, 0, 512, 1024, 1520, 1984, 2402, 2763, 2763, 3124, 3428, 3664, 3824, 3904, 3904, 0, 3904, 7808, 11632, 15296, 18724, 21848, 24611, 24611, 27374, 29776, 31760, 33280, 34304, 34816, 34816
Offset: 1

Views

Author

Michel Marcus, Jun 02 2020

Keywords

Examples

			Triangle begins:
                        1,   1,
                   0,   1,   1,   2,
              0,   2,   3,   3,   4,   4,
         0,   4,   8,  11,  11,  14,  16,  16,
    0,  16,  32,  46,  57,  57,  68,  76,  80,  80,
0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512,
		

Crossrefs

Cf. A001586 (row sums).

Programs

  • PARI
    T(n, k) = {if ((n==1) && (k==1), return (1)); if ((n+k) == 0, if (n==1, return(1), return (0))); if ((n>=k) && (k>1), return(T(n, k-1) + T(n-1, 1-k))); if ((k==1) && (n>k), return(T(n,-1))); if ((-1>=k) && (k>=-n), return(T(n, k-1) + T(n-1, -k)));}
    tabf(nn) = {for (n=1, nn, for (k=-n, -1, print1(T(n,k), ", ");); for (k=1, n, print1(T(n,k), ", ");); print;);}

Formula

T(n,k) is defined by T(1,1) = T(1,-1) = 1, T(n,-n) = 0 (n >= 2), and the recurrence
T(n,k) = T(n,k-1) + T(n-1,-k+1) if n >= k > 1,
T(n,k) = T(n,-1) if n > k = 1,
T(n,k) = T(n,k-1) + T(n-1,-k) if -1 >= k > -n.

A347930 3-Springer numbers.

Original entry on oeis.org

1, 1, 3, 16, 88, 625, 5527, 55760, 640540, 8329326, 120212331, 1905939913, 32987637967, 618591571085, 12489644875037, 270193806214360, 6235154917414954, 152875655211527878, 3968729594485785289, 108754865309750398187, 3137052120203959610759
Offset: 2

Views

Author

Alejandro H. Morales, Sep 19 2021

Keywords

Comments

a(n) is also the volume of a certain flow polytope.

Crossrefs

Programs

  • Maple
    wcomps:=proc(n,k)
           option remember;
    local ocomps,ncomps,i;
    ocomps:=combinat:-composition(n+k,k);
    ncomps:={};
    for i from 1 to nops(ocomps) do
       ncomps:=ncomps union{[seq(ocomps[i][j]-1,j=1..k)]};
    end do;
    return [op(ncomps)];
    end proc:
    b:=proc(s) option remember;
       local k;
       k := nops(s);
       if s = [seq(0,i=1..k)] then
          return(1);
       elif s[1]>0 then
          return(add(b([s[2]+j,op(s[3..k]),s[1]-j-1]),j=0..s[1]-1));
       else
          return(0);
       end if;
    end proc:a:=proc(n)   local N,S:   N := n-2;   S := wcomps(N,3);   return add(combinat:-multinomial(N,op(s))*b(s), s in S);end proc:seq(a(n),n=2..10);

Formula

a(n) = Sum_{(x,y,z), x+y+z=n-2} ((n-2)!/(x!*y!*z!))*b(x,y,z), where b(x,y,z) are the 3-Entringer numbers defined by Ramassamy.

A385895 Table read by rows: T(n, k) = T(n, k-1) + m * T(n-1, n-k) for k > 1, T(n, 1) = T(n-1, n-1), and T(n, 0) = 0^n, for m = 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 3, 9, 11, 11, 0, 11, 33, 51, 57, 57, 0, 57, 171, 273, 339, 361, 361, 0, 361, 1083, 1761, 2307, 2649, 2763, 2763, 0, 2763, 8289, 13587, 18201, 21723, 23889, 24611, 24611, 0, 24611, 73833, 121611, 165057, 201459, 228633, 245211, 250737, 250737
Offset: 0

Views

Author

Peter Luschny, Jul 20 2025

Keywords

Comments

The sequence extends the generalized Euler numbers A001586 to a regular table by a parametrized Seidel transformation (see the Python program) that for the case m = 1 leads to the Euler-Bernoulli numbers A008281.

Examples

			Triangle begins:
  [0] 1;
  [1] 0,    1;
  [2] 0,    1,    1;
  [3] 0,    1,    3,     3;
  [4] 0,    3,    9,    11,    11;
  [5] 0,   11,   33,    51,    57,    57;
  [6] 0,   57,  171,   273,   339,   361,   361;
  [7] 0,  361, 1083,  1761,  2307,  2649,  2763,  2763;
  [8] 0, 2763, 8289, 13587, 18201, 21723, 23889, 24611, 24611;
		

Crossrefs

Cf. A001586 (main diagonal), A123110 (m=0), A008281 (m=1), this sequence (m=2).

Programs

  • Maple
    T := proc(n, k) option remember; ifelse(k = 0, 0^n, ifelse(k = 1, T(n-1, n-1), T(n, k-1) + 2*T(n-1, n-k))) end: seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := T[n, k] =
      Which[
        k == 0, Boole[n == 0],
        k == 1, T[n - 1, n - 1],
        True, T[n, k - 1] + 2*T[n - 1, n - k]
      ];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
  • Python
    from functools import cache
    @cache
    def seidel(n: int, m: int) -> list[int]:
        if n == 0: return [1]
        rowA = seidel(n - 1, m)
        row = [0] + rowA
        row[1] = row[n]
        for k in range(2, n + 1):
            row[k] = row[k - 1] + m * rowA[n - k]
        return row
    def A385895row(n: int) -> list[int]: return seidel(n, 2)
    for n in range(9): print(A385895row(n))
Previous Showing 51-55 of 55 results.