cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 695 results. Next

A377468 Least perfect-power >= n.

Original entry on oeis.org

1, 4, 4, 4, 8, 8, 8, 8, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 27, 27, 32, 32, 32, 32, 32, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Crossrefs

The version for prime-powers is A000015.
The union is A001597 (perfect-powers), without powers of two A377702.
Positions of last appearances are also A001597.
The version for primes is A007918 or A151800.
The version for squarefree numbers is A067535.
Run-lengths are A076412.
The opposite version (greatest perfect-power <= n) is A081676.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,#>1&&!perpowQ[#]&],{n,100}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377468(n):
        if n == 1: return 1
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = n-f(n-1)
        return bisection(lambda x:f(x)+m,n-1,n) # Chai Wah Wu, Nov 05 2024

Formula

Positions of first appearances for n > 2 are A216765(n-2) = A001597(n-1) + 1.

A081676 Largest perfect power <= n.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 27, 27, 27, 27, 27, 32, 32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2003

Keywords

Comments

a(n) = n if n is in A001597, otherwise a(n) = a(n-1). - Robert Israel, Dec 17 2015

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N).
    Powers:= {1,seq(seq(b^p, p=2..floor(log[b](N))),b=2..isqrt(N))}:
    Powers:= sort(convert(Powers,list)):
    j:= 1:
    for i from 1 to N do
      if i >= Powers[j+1] then j:= j+1 fi;
      A[i]:= Powers[j];
    od:
    seq(A[i],i=1..N); # Robert Israel, Dec 17 2015
  • Mathematica
    Array[SelectFirst[Range[#, 1, -1], Or[And[! PrimeQ@ #, GCD @@ FactorInteger[#][[All, -1]] > 1], # == 1] &] &, 72] (* Michael De Vlieger, Jun 14 2017 *)
  • PARI
    a(n) = {while(!ispower(n), n--; if (n==0, return (1))); n;} \\ Michel Marcus, Nov 04 2015
    
  • Python
    from sympy import mobius, integer_nthroot
    def A081676(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = n-f(n)
        return bisection(lambda x:f(x)+m,m-1,n+1) # Chai Wah Wu, Nov 05 2024
  • Sage
    p = [i for i in (1..81) if i.is_perfect_power()]
    r = [[p[i]]*(p[i+1]-p[i]) for i in (0..10)]
    print([y for x in r for y in x]) # Peter Luschny, Jun 13 2017
    

Formula

a(n) = n - A069584(n).
a(n) = A001597(A069623(n)). - Ridouane Oudra, Aug 26 2025

A377432 Number of perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Between prime(4) = 7 and prime(5) = 11 we have perfect-powers 8 and 9, so a(4) = 2.
		

Crossrefs

For prime-powers instead of perfect-powers we have A080101.
Non-perfect-powers in the same range are counted by A377433.
Positions of 1 are A377434.
Positions of 0 are A377436.
Positions of terms > 1 are A377466.
For powers of 2 instead of primes we have A377467, for prime-powers A244508.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],perpowQ]],{n,100}]

Formula

a(n) + A377433(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A076467 Perfect powers m^k where m is a positive integer and k >= 3.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n with p prime then p^3|n.

Crossrefs

Subsequence of A036966.

Programs

  • Haskell
    a076467 n = a076467_list !! (n-1)
    a076467_list = 1 : filter ((> 2) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Haskell
    import qualified Data.Set as Set (null)
    import Data.Set (empty, insert, deleteFindMin)
    a076467 n = a076467_list !! (n-1)
    a076467_list = 1 : f [2..] empty where
       f xs'@(x:xs) s | Set.null s || m > x ^ 3 = f xs $ insert (x ^ 3, x) s
                      | m == x ^ 3  = f xs s
                      | otherwise = m : f xs' (insert (m * b, b) s')
                      where ((m, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 18 2013
    
  • Maple
    N:= 10^5: # to get all terms <= N
    S:= {1, seq(seq(m^k, m = 2 .. floor(N^(1/k))),k=3..ilog2(N))}:
    sort(convert(S,list)); # Robert Israel, Sep 30 2015
  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 2, a = Append[a, n]; Print[n]], {n, 2, 17575}]; a
    (* Second program: *)
    n = 10^5; Join[{1}, Table[m^k, {k, 3, Floor[Log[2, n]]}, {m, 2, Floor[n^(1/k)]}] // Flatten // Union] (* Jean-François Alcover, Feb 13 2018, after Robert Israel *)
  • PARI
    is(n)=ispower(n)>2||n==1 \\ Charles R Greathouse IV, Sep 03 2015, edited for n=1 by M. F. Hasler, May 26 2018
    
  • PARI
    A076467(lim)={my(L=List(1),lim2=logint(lim,2),m,k);for(k=3,lim2, for(m=2,sqrtnint(lim,k),listput(L, m^k);));listsort(L,1);L}
    b076467(lim)={my(L=A076467(lim)); for(i=1,#L,print(i ," ",L[i]));} \\ Anatoly E. Voevudko, Sep 29 2015, edited by M. F. Hasler, May 25 2018
    
  • PARI
    A076467_vec(LIM,S=List(1))={for(x=2,sqrtnint(LIM,3),for(k=3, logint(LIM, x), listput(S, x^k))); Set(S)} \\ M. F. Hasler, May 25 2018
    
  • Python
    from sympy import mobius, integer_nthroot
    def A076467(n):
        def f(x): return int(n-1+x-integer_nthroot(x,4)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]-2) for k in range(3,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

For n > 1: GCD(exponents in prime factorization of a(n)) > 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = 2 - zeta(2) + Sum_{k>=2} mu(k)*(2 - zeta(k) - zeta(2*k)) = 1.3300056287... - Amiram Eldar, Jul 02 2022

Extensions

Edited by Robert Israel, Sep 30 2015

A377436 Numbers k such that there is no perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 8 and 9 are 19 and 23, and the interval (20,21,22) contains no prime-powers, so 8 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A377467, A013597, A014210, A014234, A244508.
For squarefree instead of perfect-power we have A068360, see A061398, A377430, A377431.
For just squares (instead of all perfect-powers) we have A221056, primes A224363.
For prime-powers (instead of perfect-powers) we have A377286.
These are the positions of 0 in A377432.
For one instead of none we have A377434, for prime-powers A377287.
For two instead of none we have A377466, for prime-powers A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the nearest prime-power before prime(n)-1, difference A377289.
A080101 and A366833 count prime-powers between primes, see A377057, A053607, A304521.
A081676 gives the nearest perfect-power up to n.
A246655 lists the prime-powers not including 1, complement A361102.
A377468 gives the nearest perfect-power after n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1, Prime[#+1]-1],perpowQ]]==0&]

A052486 Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power.

Original entry on oeis.org

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, 6075
Offset: 1

Views

Author

Henry Bottomley, Mar 16 2000

Keywords

Comments

Number of terms < 10^n: 0, 1, 13, 60, 252, 916, 3158, 10553, 34561, 111891, 359340, 1148195, 3656246, 11616582, 36851965, ..., A118896(n) - A070428(n). - Robert G. Wilson v, Aug 11 2014
a(n) = (s(n))^2 * f(n), s(n) > 1, f(n) > 1, where s(n) is not a power of f(n), and f(n) is squarefree and gcd(s(n), f(n)) = f(n). - Daniel Forgues, Aug 11 2015

Examples

			a(3)=200 because 200=2^3*5^2, both 3 and 2 are greater than 1, and the highest common factor of 3 and 2 is 1.
Factorizations of a(1) to a(20):
    72 = 2^3  3^2,  108 = 2^2 3^3,  200 = 2^3 5^2,  288 = 2^5  3^2,
   392 = 2^3  7^2,  432 = 2^4 3^3,  500 = 2^2 5^3,  648 = 2^3  3^4,
   675 = 3^3  5^2,  800 = 2^5 5^2,  864 = 2^5 3^3,  968 = 2^3 11^2,
   972 = 2^2  3^5, 1125 = 3^2 5^3, 1152 = 2^7 3^2, 1323 = 3^3  7^2,
  1352 = 2^3 13^2, 1372 = 2^2 7^3, 1568 = 2^5 7^2, 1800 = 2^3  3^2 5^2.
Examples for a(n) = (s(n))^2 * f(n): (see above comment)
s(n) = 6,  6, 10, 12, 14, 12, 10, 18, 15, 20, 12, 22, 18, 15, 24, 21,
f(n) = 2,  3,  2,  2,  2,  3,  5,  2,  3,  2,  6,  2,  3,  5,  2,  3,
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
    select(filter,[$1..10000]); # Robert Israel, Aug 11 2014
  • Mathematica
    achillesQ[n_] := Block[{ls = Last /@ FactorInteger@n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 5500, achillesQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecmin(f)>1 && gcd(f)==1 \\ Charles R Greathouse IV, Sep 18 2015, replacing code by M. F. Hasler, Sep 23 2010
    
  • Python
    from math import gcd
    from itertools import count, islice
    from sympy import factorint
    def A052486_gen(startvalue=1): # generator of terms >= startvalue
        return (n for n in count(max(startvalue,1)) if (lambda x: all(e > 1 for e in x) and gcd(*x) == 1)(factorint(n).values()))
    A052486_list = list(islice(A052486_gen(),20)) # Chai Wah Wu, Feb 19 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A052486(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = O(n^2). - Daniel Forgues, Aug 11 2015
a(n) = O(n^2 / log log n). - Daniel Forgues, Aug 12 2015
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} mu(k)*(1-zeta(k)) - 1 = A082695 - A072102 - 1 = 0.06913206841581433836... - Amiram Eldar, Oct 14 2020

Extensions

Example edited by Mac Coombe (mac.coombe(AT)gmail.com), Sep 18 2010
Name edited by M. F. Hasler, Jul 17 2019

A376596 Second differences of consecutive prime-powers inclusive (A000961). First differences of A057820.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, -4, 1, 0, 1, -2, 4, -4, 0, 4, 2, -4, -2, 2, -2, 2, 4, -4, -2, -1, 2, 3, -4, 8, -8, 4, 0, -2, -2, 2, 2, -4, 8, -8, 2, -2, 10, 0, -8, -2, 2, 2, -4, 0, 6, -3, -4, 5, 0, -4, 4, -2, -2
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2024

Keywords

Comments

For the exclusive version, shift left once.

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
For first differences we had A057820, sorted firsts A376340(n)+1 (except first term).
Positions of zeros are A376597, complement A376598.
Sorted positions of first appearances are A376653, exclusive A376654.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    Differences[Select[Range[1000],#==1||PrimePowerQ[#]&],2]
  • Python
    from sympy import primepi, integer_nthroot
    def A376596(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        return (a:=iterfun(f,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # Chai Wah Wu, Oct 02 2024

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A376562 Second differences of consecutive non-perfect-powers (A007916). First differences of A375706.

Original entry on oeis.org

1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros are A376588, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376588 (inflections and undulations), A376589 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ],2]
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A376562(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r = m+((k:=next(i for i in count(1) if not perfect_power(m+i)))<<1)
        return next(i for i in count(1-k) if not perfect_power(r+i)) # Chai Wah Wu, Oct 02 2024

A377281 Difference between the n-th prime and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 4, 2, 2, 1, 4, 2, 4, 2, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 1, 6, 2, 10, 2, 6, 6, 4, 2, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 5, 6, 6, 2, 6, 4, 2, 6, 14, 4, 2, 4, 14, 6, 6, 2, 4, 6, 2, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The twelfth prime is 37, with next prime-power 41, so a(12) = 4.
		

Crossrefs

For prime instead of prime-power we have A001223.
For powers of two instead of primes we have A013597, A014210, A014234, A244508, A304521.
This is the restriction of A377282 to the prime numbers.
For previous instead of next prime-power we have A377289, restriction of A276781.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.
A246655 lists the prime-powers not including 1.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n]+1,!PrimePowerQ[#]&]-Prime[n],{n,100}]
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A377281(n): return -(p:=prime(n))+next(filter(lambda m:len(factorint(m))<=1, count(p+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(prime(n)) - prime(n).
a(n) = A345531(n) - prime(n).
a(n) = A377282(prime(n)).
Previous Showing 101-110 of 695 results. Next