cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1287 results. Next

A059557 Beatty sequence for 1 + gamma^2, (gamma is the Euler-Mascheroni constant A001620).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059558.

Programs

  • Magma
    R:=RealField(100); [Floor((1+EulerGamma(R)^2)*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
  • Mathematica
    Table[Floor[(1 + EulerGamma^2)*n], {n,1,100}] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    { default(realprecision, 100); b=1 + Euler^2; for (n = 1, 2000, write("b059557.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
    

Formula

a(n) = A042968(n-1), 1<=n<2146. - R. J. Mathar, Oct 05 2008

A059565 Beatty sequence for e^gamma (gamma is the Euler-Mascheroni constant A001620).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 103, 105, 106, 108, 110, 112, 113, 115, 117
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Cf. A073004. Beatty complement is A059566.

Programs

  • Magma
    R:=RealField(100); [Floor(Exp(EulerGamma(R))*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
  • Mathematica
    Table[ Floor[ n * E^EulerGamma], {n, 1, 70} ]
  • PARI
    { default(realprecision, 100); b=exp(1)^Euler; for (n = 1, 2000, write("b059565.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
    

A097664 Decimal expansion of the constant 3*exp(psi(2/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 4, 2, 9, 8, 8, 4, 3, 0, 8, 4, 0, 1, 2, 3, 4, 2, 0, 5, 6, 6, 1, 7, 9, 0, 4, 2, 4, 7, 7, 5, 1, 3, 8, 0, 9, 6, 5, 6, 4, 9, 8, 2, 3, 6, 7, 6, 7, 5, 6, 4, 4, 6, 4, 8, 8, 7, 6, 3, 4, 6, 2, 1, 4, 8, 8, 3, 6, 9, 9, 4, 5, 0, 9, 1, 2, 2, 0, 3, 9, 6, 1, 6, 1, 8, 2, 1, 9, 5, 9, 1, 4, 6, 9, 0, 1, 8, 4, 6, 3, 6, 2, 3, 7, 8
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097678 for example).

Examples

			c = 1.42988430840123420566179042477513809656498236767564464887634...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/Sqrt(3))*Exp(Pi(R)/Sqrt(12)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[1/Sqrt[3]*E^(Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    3*exp(psi(2/3)+Euler)
    

Formula

c = 1/sqrt(3)*exp(Pi/sqrt(12)).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A097666 Decimal expansion of the constant 4*exp(psi(3/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

2, 4, 0, 5, 2, 3, 8, 6, 9, 0, 4, 8, 2, 6, 7, 5, 8, 2, 7, 7, 3, 6, 5, 1, 7, 8, 3, 3, 3, 5, 1, 9, 1, 6, 5, 6, 3, 1, 9, 5, 0, 8, 5, 4, 3, 7, 3, 3, 2, 2, 6, 7, 4, 7, 0, 0, 1, 0, 4, 0, 7, 7, 4, 4, 6, 2, 1, 2, 7, 5, 9, 5, 2, 4, 4, 5, 7, 9, 1, 0, 6, 8, 3, 7, 4, 3, 5, 2, 3, 8, 3, 2, 9, 1, 9, 4, 1, 6, 7, 7, 3, 2, 8, 6, 4
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-4 linear recursions with varying coefficients (see A097679 for example).

Examples

			c = 2.40523869048267582773651783335191656319508543733226747001040...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(Pi(R)/2)/2; // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1/2*E^(Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    4*exp(psi(3/4)+Euler)
    

Formula

c = 1/2*exp(Pi/2).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097667 Decimal expansion of the constant 5*exp(psi(1/5) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 4, 4, 9, 4, 1, 8, 2, 8, 7, 7, 9, 2, 0, 8, 8, 2, 0, 6, 0, 8, 4, 6, 7, 3, 9, 6, 4, 2, 7, 6, 6, 5, 2, 0, 3, 4, 0, 2, 3, 8, 5, 9, 4, 3, 7, 1, 0, 5, 9, 8, 6, 9, 8, 0, 5, 8, 6, 1, 6, 7, 2, 9, 6, 3, 2, 5, 8, 8, 5, 3, 0, 7, 8, 6, 1, 2, 5, 6, 2, 7, 4, 7, 6, 8, 5, 8, 5, 5, 0, 9, 5, 9, 6, 1, 7, 3, 8, 6, 8, 6, 0, 8, 4, 4
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 0.04494182877920882060846739642766520340238594371059869805861...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(-Pi/2*Sqrt[1 + 2/Sqrt[5]]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
    Join[{0}, RealDigits[N[5*Exp[PolyGamma[1/5] + EulerGamma], 120], 10, 100][[1]]] (* G. C. Greubel, Dec 31 2016 *)
  • PARI
    5*exp(psi(1/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1+2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097671 Decimal expansion of the constant 6*exp(psi(1/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 1, 9, 0, 0, 3, 1, 1, 4, 8, 9, 8, 1, 4, 0, 4, 4, 7, 6, 2, 0, 2, 9, 2, 0, 9, 4, 3, 2, 9, 7, 3, 4, 2, 7, 0, 0, 9, 4, 4, 6, 2, 7, 0, 1, 5, 0, 0, 3, 4, 1, 3, 7, 6, 0, 4, 2, 2, 4, 2, 5, 1, 8, 7, 4, 8, 0, 4, 2, 5, 7, 8, 9, 3, 1, 5, 4, 3, 2, 6, 4, 0, 5, 9, 3, 2, 3, 1, 8, 2, 4, 5, 1, 5, 4, 6, 3, 2, 4, 1, 8, 2, 6, 2, 4
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-6 linear recursions with varying coefficients (see A097681 for example).

Examples

			c = 0.01900311489814044762029209432973427009446270150034137604224...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[12]*E^(-Pi/2Sqrt[3]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    6*exp(psi(1/6)+Euler)

Formula

c = 1/sqrt(12)*exp(-Pi/2*sqrt(3)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097673 Decimal expansion of the constant 8*exp(psi(1/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 0, 3, 2, 4, 1, 1, 2, 2, 8, 3, 0, 0, 9, 6, 3, 0, 7, 3, 7, 4, 7, 5, 1, 1, 7, 1, 2, 1, 7, 9, 1, 9, 0, 1, 7, 0, 1, 0, 7, 3, 8, 4, 7, 9, 2, 2, 1, 5, 1, 0, 4, 0, 0, 6, 9, 2, 9, 9, 0, 5, 9, 2, 3, 0, 5, 1, 8, 5, 7, 1, 1, 0, 2, 1, 3, 7, 4, 1, 0, 1, 1, 3, 2, 7, 9, 8, 7, 0, 4, 4, 4, 3, 6, 4, 9, 4, 7, 3, 7, 7, 4, 7, 2, 2
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 0.00324112283009630737475117121791901701073847922151040069299...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(-Sqrt[2])/2E^(-Pi/2*(1 + Sqrt[2])), 10, 103][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(1/8)+Euler)

Formula

c = (1+sqrt(2))^(-sqrt(2))/2*exp(-Pi/2*(1+sqrt(2))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A098967 Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.

Original entry on oeis.org

5, 7, 72, 156, 649, 1532, 8606, 65120, 90082, 402431, 421593, 3593992, 3598805, 7672348, 8486772, 67776646, 70936947, 632917467, 4951463144, 7249807082, 48096050401, 448654283622, 4173997644923, 5362535003337, 42937337737673
Offset: 0

Views

Author

Sam Handler (shandler(AT)Macalester.edu), Oct 25 2004

Keywords

Examples

			0.57721566490153286060651209008240243104215933593992359880576723488...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{ts = StringDrop[ ToString[ N[n, 250]], 2], a = {}, d = 0, k = 1}, While[ ToExpression[ts] > d, While[d >= ToExpression[ StringTake[ts, k]], k++ ]; te = ToExpression[ StringTake[ts, k]]; d = te; AppendTo[a, te]; ts = StringDrop[ts, k]; If[k > 1, k-- ]]; a]; f[EulerGamma] (* Robert G. Wilson v, Nov 01 2004 *)

Extensions

Corrected and extended by Robert G. Wilson v, Nov 01 2004

A345208 Decimal expansion of log(2*Pi) - gamma - 1, where gamma is Euler's constant (A001620).

Original entry on oeis.org

2, 6, 0, 6, 6, 1, 4, 0, 1, 5, 0, 7, 8, 1, 2, 6, 2, 2, 9, 5, 4, 1, 4, 7, 3, 8, 2, 7, 2, 8, 8, 3, 2, 8, 4, 8, 6, 8, 0, 6, 3, 5, 6, 1, 1, 3, 3, 5, 6, 4, 3, 2, 2, 6, 8, 2, 8, 5, 3, 5, 8, 4, 6, 0, 8, 0, 6, 6, 3, 6, 6, 5, 0, 7, 6, 8, 5, 6, 1, 2, 4, 4, 5, 2, 5, 3, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Comments

The first two formulae (in the Formula section) are similar to the sum and integral lim_{n->oo} (1/n) * Sum_{k=1..n} frac(n/k) = Integral_{x=0..1} frac(1/x) dx = 1 - gamma (A153810).
The second raw moment of the distribution of the fractional part of 1/x, where x is chosen uniformly at random from (0, 1]. Since the expected value is 1 - gamma, the second central moment, or variance, is log(2*Pi) - gamma - 1 - (1 - gamma)^2 = log(2*Pi) - gamma^2 + gamma - 2 = 0.081914807503... and the standard deviation is sqrt(log(2*Pi) - gamma^2 + gamma - 2) = 0.2862076300...

Examples

			0.26066140150781262295414738272883284868063561133564...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 3.42, pages 145 and 195.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2*Pi] - EulerGamma - 1, 10, 100][[1]]

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=1..n} frac(n/k)^2, where frac(x) = x - floor(x) is the fractional part of x.
Equals Integral_{x=0..1} frac(1/x)^2 dx.
Equals 2 * Sum_{k>=2} (zeta(k)-1)/(k*(k+1)).
Equals A061444 - A001620 - 1.
Equals -2 * Sum_{k>=1} (H(k) - log(k) - gamma - 1/(2*k)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2013). - Amiram Eldar, Mar 26 2022

A053977 Engel expansion of the Euler-Mascheroni constant gamma A001620 = 0.57721566... .

Original entry on oeis.org

2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, 147961485, 210810243, 814960948, 1003849128, 1016803038, 12917183059, 26242325020, 22215291139324, 30797877759859, 60139200644343, 121848657453426, 133555928335475
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001
Previous Showing 11-20 of 1287 results. Next