cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A087737 Value of (n,n+1) concatenated in binary representation.

Original entry on oeis.org

6, 11, 28, 37, 46, 55, 120, 137, 154, 171, 188, 205, 222, 239, 496, 529, 562, 595, 628, 661, 694, 727, 760, 793, 826, 859, 892, 925, 958, 991, 2016, 2081, 2146, 2211, 2276, 2341, 2406, 2471, 2536, 2601, 2666, 2731, 2796, 2861, 2926, 2991, 3056, 3121
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n) = n * 2^A070939(n+1) + (n+1).

Examples

			n=12: 12->'1100', 12+1->'1101', a(12)='1100''1101'='11001101'->205.
		

Crossrefs

Programs

  • Maple
    a:= n-> n*(2^(ilog2(n+1)+1)+1)+1:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 20 2017
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n,2],IntegerDigits[n+1,2]],2],{n,50}] (* Harvey P. Dale, Jan 14 2013 *)
    Table[n 2^IntegerLength[#, 2] + # &[n + 1], {n, 48}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    a(n) = fromdigits(Vec(concat(binary(n), binary(n+1))), 2); \\ Michel Marcus, May 20 2017

A309809 a(n) is the concatenation of n and 2n+1.

Original entry on oeis.org

13, 25, 37, 49, 511, 613, 715, 817, 919, 1021, 1123, 1225, 1327, 1429, 1531, 1633, 1735, 1837, 1939, 2041, 2143, 2245, 2347, 2449, 2551, 2653, 2755, 2857, 2959, 3061, 3163, 3265, 3367, 3469, 3571, 3673, 3775, 3877, 3979, 4081, 4183, 4285, 4387, 4489, 4591, 4693, 4795, 4897
Offset: 1

Views

Author

Robert Israel, Aug 17 2019

Keywords

Examples

			a(3)=37 is the concatenation of 3 and 7.
		

Crossrefs

Programs

  • Maple
    seq(n*10^(ceil(log[10](2*n+1)))+2*n+1, n=1..100);
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[2n+1]]],{n,50}] (* Harvey P. Dale, Jan 30 2024 *)

Formula

a(n) = n*10^(ceiling(log_10(2*n+1))) + 2*n + 1.

A032607 Concatenation of n and n + 2 or {n,n+2}.

Original entry on oeis.org

13, 24, 35, 46, 57, 68, 79, 810, 911, 1012, 1113, 1214, 1315, 1416, 1517, 1618, 1719, 1820, 1921, 2022, 2123, 2224, 2325, 2426, 2527, 2628, 2729, 2830, 2931, 3032, 3133, 3234, 3335, 3436, 3537, 3638, 3739, 3840, 3941, 4042, 4143, 4244
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@{n,n+2}]],{n,50}] (* Harvey P. Dale, Dec 18 2013 *)

A032608 Concatenation of n and n + 3.

Original entry on oeis.org

14, 25, 36, 47, 58, 69, 710, 811, 912, 1013, 1114, 1215, 1316, 1417, 1518, 1619, 1720, 1821, 1922, 2023, 2124, 2225, 2326, 2427, 2528, 2629, 2730, 2831, 2932, 3033, 3134, 3235, 3336, 3437, 3538, 3639, 3740, 3841, 3942, 4043, 4144, 4245
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[n+3]]],{n,50}] (* Harvey P. Dale, Jul 11 2011 *)
    #[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Table[{n,n+3},{n,50}] (* Harvey P. Dale, May 21 2018 *)

A032609 Concatenation of n and n + 4 or {n,n+4}.

Original entry on oeis.org

15, 26, 37, 48, 59, 610, 711, 812, 913, 1014, 1115, 1216, 1317, 1418, 1519, 1620, 1721, 1822, 1923, 2024, 2125, 2226, 2327, 2428, 2529, 2630, 2731, 2832, 2933, 3034, 3135, 3236, 3337, 3438, 3539, 3640, 3741, 3842, 3943, 4044, 4145, 4246
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032611 Concatenation of n and n + 6 or {n,n+6}.

Original entry on oeis.org

17, 28, 39, 410, 511, 612, 713, 814, 915, 1016, 1117, 1218, 1319, 1420, 1521, 1622, 1723, 1824, 1925, 2026, 2127, 2228, 2329, 2430, 2531, 2632, 2733, 2834, 2935, 3036, 3137, 3238, 3339, 3440, 3541, 3642, 3743, 3844, 3945, 4046, 4147, 4248
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032613 Concatenation of n and n + 8 or {n,n+8}.

Original entry on oeis.org

19, 210, 311, 412, 513, 614, 715, 816, 917, 1018, 1119, 1220, 1321, 1422, 1523, 1624, 1725, 1826, 1927, 2028, 2129, 2230, 2331, 2432, 2533, 2634, 2735, 2836, 2937, 3038, 3139, 3240, 3341, 3442, 3543, 3644, 3745, 3846, 3947, 4048, 4149
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032614 Concatenation of n and n + 9 or {n,n+9}.

Original entry on oeis.org

110, 211, 312, 413, 514, 615, 716, 817, 918, 1019, 1120, 1221, 1322, 1423, 1524, 1625, 1726, 1827, 1928, 2029, 2130, 2231, 2332, 2433, 2534, 2635, 2736, 2837, 2938, 3039, 3140, 3241, 3342, 3443, 3544, 3645, 3746, 3847, 3948, 4049, 4150, 4251, 4352, 4453, 4554, 4655
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*10^Floor[Log10[n+9]+1]+n+9; Array[a,46] (* Stefano Spezia, Sep 04 2023 *)

Extensions

a(42)-a(46) from Stefano Spezia, Sep 04 2023

A253253 a(n) = smallest divisor of the concatenation of n and n+1 that did not occur earlier.

Original entry on oeis.org

1, 23, 2, 3, 4, 67, 6, 89, 5, 337, 8, 1213, 9, 283, 379, 7, 859, 17, 10, 43, 1061, 13, 14, 25, 421, 37, 11, 41, 293, 433, 12, 53, 1667, 15, 16, 3637, 21, 349, 20, 449, 19, 4243, 24, 35, 2273, 1549, 1187, 373, 18, 5051, 28, 51, 2677, 1091, 463, 5657, 2879, 27
Offset: 1

Views

Author

Keywords

Comments

Is this a permutation of the integers > 0?
Comment from N. J. A. Sloane, May 19 2017: (Start)
It should not be difficult to prove that every positive integer appears.
If not, let m be the smallest missing number. There is an n_0 such that for all n >= n_0, a(n) > m. The theorem will follow if we can find an N > n_0 such that
m divides the concatenation of N and N+1.
Let N have k digits and suppose that
10^(k-1) <= N <= 10^k - 2.
The concatenation of N and N+1 is N*(10^k+1)+1, so we want to find numbers k and N such that
N*(10^k+1) == -1 mod m.
Case (i). If gcd(m,10)=1, then by Euler's theorem, 10^phi(m) == 1 mod m, so we can take k to be a sufficiently large multiple of phi(m), and then take N to be a number of the form r*m-1 in the range 10^(k-1) <= N <= 10^k - 2.
Case (ii). If m = 2^r or 5^r, then for large k, 10^k+1 == 1 mod m, and we take N to be of the form m*s-1 in the range 10^(k-1) <= N <= 10^k - 2.
The other cases are left to the reader. (End)

Crossrefs

Programs

  • Haskell
    import Data.List (insert); import Data.List.Ordered (minus)
    a253253 n = a253253_list !! (n-1)
    a253253_list = f a001704_list [] where
       f (x:xs) ds = y : f xs (insert y ds) where
                     y = head (a027750_row' x `minus` ds)

A085776 Numbers k such that k concatenated with k+1 is a semiprime.

Original entry on oeis.org

3, 10, 14, 17, 18, 20, 21, 26, 30, 32, 33, 38, 45, 46, 48, 53, 54, 57, 66, 70, 72, 77, 81, 84, 88, 98, 101, 105, 110, 116, 118, 122, 125, 128, 132, 140, 141, 142, 146, 152, 158, 162, 164, 170, 173, 176, 177, 178, 185, 190, 194, 198, 204, 206, 208, 210, 212, 218, 222
Offset: 1

Views

Author

Jason Earls, Jul 23 2003

Keywords

Examples

			10 is a term because 1011 = 3*337.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], PrimeOmega[FromDigits[IntegerString[#] <> IntegerString[#+1]]] == 2 &] (* Paolo Xausa, Apr 17 2024 *)
Previous Showing 11-20 of 31 results. Next