cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A144356 Partition number array, called M31(6), related to A049374(n,m)= |S1(6;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 6, 1, 42, 18, 1, 336, 168, 108, 36, 1, 3024, 1680, 2520, 420, 540, 60, 1, 30240, 18144, 30240, 17640, 5040, 15120, 3240, 840, 1620, 90, 1, 332640, 211680, 381024, 493920, 63504, 211680, 123480, 158760, 11760, 52920, 22680, 1470, 3780, 126, 1, 3991680, 2661120
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(6;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Sixth member (K=6) in the family M31(K) of partition number arrays.
If M31(6;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle |S1(6)|:= A049374.

Examples

			[1];[6,1];[42,18,1];[336,168,108,36,1];[3024,1680,2520,420,540,60,1];...
a(4,3)= 108 = 3*|S1(6;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

A049402 (row sums).
A144355 (M31(5) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(6;j,1)|^e(n,k,j),j=1..n)= M3(n,k)*product(|S1(6;j,1)|^e(n,k,j),j=1..n) with |S1(6;n,1)|= A001725(n+4) = (n+4)!/5!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A145356 Partition number array, called M31hat(6).

Original entry on oeis.org

1, 6, 1, 42, 6, 1, 336, 42, 36, 6, 1, 3024, 336, 252, 42, 36, 6, 1, 30240, 3024, 2016, 1764, 336, 252, 216, 42, 36, 6, 1, 332640, 30240, 18144, 14112, 3024, 2016, 1764, 1512, 336, 252, 216, 42, 36, 6, 1, 3991680, 332640, 181440, 127008, 112896, 30240, 18144, 14112
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31hat(6;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Sixth member (K=6) in the family M31hat(K) of partition number arrays.
If M31hat(6;n,k) is summed over those k numerating partitions with fixed number of parts m one obtains the unsigned triangle S1hat(6):= A145357.

Examples

			Triangle begins
  [1];
  [6,1];
  [42,6,1];
  [336,42,36,6,1];
  [3024,336,252,42,36,6,1];
  ...
a(4,3)= 36 = |S1(6;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A145358 (row sums).
Cf. A144890 (M31hat(5) array), A145357 (S1hat(6)).

Formula

a(n,k) = product(|S1(6;j,1)|^e(n,k,j),j=1..n) with |S1(6;n,1)| = A049374(n,1) = A001725(n+4) = [1,6,42,336,3024,30240,332640,...] = (n+4)!/5!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A145359 Second column (m=2) of triangle A145357 (S1hat(6)).

Original entry on oeis.org

1, 6, 78, 588, 6804, 62496, 753984, 8273664, 109118016, 1408700160, 20697223680, 309818234880, 5100265336320, 87215844925440, 1605019401216000, 30898776106598400, 631358784683827200, 13503510009903513600, 303781522335363072000, 7137966147222822912000
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Crossrefs

Cf. A145357, A001725 (first column), A145360 (third column).

Formula

a(n) = A145357(n+2,2), n>=0.

Extensions

Changed offset from 0 to 1 by Wolfdieter Lang, Nov 17 2008

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A051525 Third unsigned column of triangle A051338.

Original entry on oeis.org

0, 0, 1, 21, 335, 5000, 74524, 1139292, 18083484, 299705400, 5198985576, 94461323616, 1797180658272, 35776357096896, 744402741205824, 16169795109262080, 366214212167489280, 8636605663418933760
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=6) ~ exp(-x)/x^3*(1 - 21/x + 335/x^2 - 5000/x^3 + 74524/x^4 - 1139292/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051338.

Crossrefs

Cf. A001725 (m=0), A051524 (m=1) unsigned columns.

Formula

a(n) = A051338(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^6).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,6)|, for n>=1. - Milan Janjic, Dec 21 2008

A145360 Third column (m=3) of triangle A145357 (S1hat(6)).

Original entry on oeis.org

1, 6, 78, 804, 8316, 85176, 1021608, 11394432, 144885888, 1886008320, 26529503616, 390680672256, 6237490904064, 104348756736000, 1873079661358080, 35428981499412480, 710916534432276480, 14999585506406645760, 333292875250857984000, 7754472236069830656000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Crossrefs

Cf. A001725 (first column), A145359 (second column).

Formula

a(n) = A145357(n+3,3), n>=0.

A249619 Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A036038 and A078760 (the multinomial coefficients), but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A005651
Columns: 0: A000142 (factorials), 1: A001710, 2: A001715, 3: A133799, 4: A001720, 6: A001725, 10: A001730, 14: A049388
Last in row: end-2: A037955 after 1 term mismatch, end-1: A001405, end: A000012
The rightmost columns form the triangle A173333:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
A249620 shows the number of partitions of the same multisets. A187783 shows the number of permutations of special multisets.

Examples

			Triangle begins:
  n     0    1    2    3   4   5  6   7   8   9 10
m
0       1
1       1
2       2    1
3       6    3    1
4      24   12    4    6   1
5     120   60   20   30   5  10  1
6     720  360  120  180  30  60  6  90  15  20  1
		

Crossrefs

A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Examples

			The triangle begins:
     1;
     1,   1;
     3,   1,   1;
    13,   2,   2,  1;
    73,   6,   6,  3,  1;
   501,  24,  24, 12,  4, 1;
  4051, 120, 120, 60, 20, 5, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
Previous Showing 31-38 of 38 results.