cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 544 results. Next

A380637 Expansion of e.g.f. exp(x*G(3*x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 19, 703, 39313, 2959921, 280935811, 32221238239, 4336213980673, 670088514363553, 116959281939738451, 22759439305951039231, 4885844614853182749649, 1147088485458553806981073, 292394958982688921734424323, 80420728320326634679448511391
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3^(n-1)*(n-1)!*pollaguerre(n-1, 2*n+1, -1/3));

Formula

E.g.f.: exp( (G(3*x)-1)/3 ), where G(x) is described above.
a(n) = (n-1)! * Sum_{k=0..n-1} 3^k * binomial(3*n,k)/(n-k-1)! for n > 0.
a(n+1) = 3^n * n! * LaguerreL(n, 2*n+3, -1/3).
a(n) ~ 3^(4*n - 1/2) * n^(n-1) / (2^(2*n + 3/2) * exp(n - 1/6)). - Vaclav Kotesovec, Jan 29 2025
a(n) = (-3)^(n-1)*U(1-n, 2*(1+n), -1/3), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 29 2025
E.g.f.: exp( Series_Reversion( x/(1+3*x)^3 ) ). - Seiichi Manyama, Mar 16 2025

A380640 Expansion of e.g.f. exp(x*G(2*x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 193, 6673, 319521, 19575001, 1461908449, 128828471073, 13086232224193, 1505486837413801, 193477959856396161, 27472294970916814129, 4271180551913140331233, 721640087945607030774393, 131656978622706616938932641, 25795404137789777215960879681, 5402020596794976601680149234049
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, 2^k*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} 2^k * binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
From Vaclav Kotesovec, Jan 29 2025: (Start)
E.g.f. A(x) satisfies x = log(A(x)) * (1 - 2*log(A(x)))^2.
a(n) ~ 3^(3*n - 3/2) * n^(n-1) / (2^(n + 1/2) * exp(n - 1/6)). (End)
a(n) = 2^(n-1)*U(1-n, 2-3*n, 1/2), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 29 2025
E.g.f.: exp( Series_Reversion( x*(1-2*x)^2 ) ). - Seiichi Manyama, Mar 16 2025

A381905 Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 8, 47, 331, 2570, 21204, 182383, 1617163, 14675783, 135643839, 1272434069, 12083390801, 115934171020, 1122129142754, 10943574296787, 107433077283767, 1060800046515405, 10528321010319417, 104972259713887665, 1050936451974803973, 10560662821468607719
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(n+1, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)) * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(n+1,n-k)/(n+3*k+1).

A381906 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 15, 100, 787, 6848, 63583, 617350, 6191888, 63650430, 667043379, 7099806346, 76538663840, 833975952491, 9169925032189, 101616966476850, 1133736002540882, 12724529836447420, 143567856744995568, 1627454706916166076, 18526192807286106198, 211694470334287787868
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+2, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n+2,n-k)/(n+3*k+1).

A381907 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 25, 197, 1783, 17646, 185622, 2039617, 23149542, 269367631, 3196544816, 38539697456, 470773651286, 5813914938293, 72470441063067, 910587733474165, 11521140613913305, 146659482494039073, 1876975898990490298, 24137070792680577688, 311724732112458291945
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n+3, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n+3,n-k)/(n+3*k+1).

A381985 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 2, 13, 217, 5937, 223641, 10725433, 625007993, 42883208609, 3386452550689, 302545287708201, 30170153462509545, 3322052185576104049, 400328811249634307249, 52406094009429908677049, 7405663486143907784247481, 1123601498350780798756198209, 182173718779147621454796872769
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(n-k)*binomial(4*k+1, k)/((4*k+1)*(n-k)!));

Formula

Let F(x) be the e.g.f. of A364987. F(x) = B(x*A(x)) = exp( 1/3 * Sum_{k>=1} binomial(3*k,k) * (x*A(x))^k/k ).
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k) * A002293(k)/(n-k)!.

A382058 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 67, 1465, 44541, 1735681, 82527439, 4632741905, 299875704697, 21989097804961, 1801520077445331, 163092373817762137, 16168084561101716725, 1741946677697976052577, 202668693570279026375671, 25324088113475137179021601, 3382305512670022948599733233, 480858973986045019386825360577
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

Let F(x) be the e.g.f. of A377546. F(x) = log(A(x))/x = B(x*A(x))^2.
E.g.f.: A(x) = exp( Series_Reversion( x*(1 - x*exp(x))^2 ) ).
a(n) = 2 * n! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.

A073147 Triangle of numbers {a(n,k), n >= 0, 0<=k<=n} defined by a(0,0)=1, a(n,0)=A001764(n), a(n,n)=A006013(n), a(n,n-1)=A006629(n-1).

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 12, 15, 18, 30, 55, 67, 76, 88, 143, 273, 328, 364, 400, 455, 728, 1428, 1701, 1866, 2010, 2175, 2448, 3876, 7752, 9180, 9999, 10659, 11319, 12138, 13566, 21318, 43263
Offset: 0

Views

Author

Paul D. Hanna, Jul 18 2002

Keywords

Comments

Related to generalized Catalan numbers; in particular, C(3n,n)/(2n+1) (enumerates ternary trees and also non-crossing trees)(A001764) and sum of root degrees of all noncrossing trees on nodes on a circle (A006629).
These numbers are cardinalities of some intervals in the Tamari lattices. - F. Chapoton, Jul 15 2021

Examples

			{1}, {1,2}, {3,4,7}, {12,15,18,30}, {55,67,76,88,143}, {273,328,364,400,455,728},...
		

Crossrefs

Formula

(n, m)-th entry in triangle is Sum A001764(n-k)*A001764(k), k=0..m.

A130579 Convolution of A000108 (Catalan numbers) and A001764 (ternary trees): a(n) = Sum_{k=0..n} C(2k,k) * C(3(n-k),n-k) / [(k+1)(2(n-k)+1)].

Original entry on oeis.org

1, 2, 6, 22, 92, 423, 2087, 10856, 58765, 327877, 1872490, 10890483, 64267612, 383773529, 2314271146, 14071475748, 86165249745, 530862665988, 3288219482754, 20464419717069, 127901478759153, 802421158028657
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2007

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(2*k, k)/(k+1)*binomial(3*(n-k), n-k)/(2*(n-k)+1),k=0..n) end proc:
    map(f, [$0..25]); # Robert Israel, Nov 12 2024
  • PARI
    a(n)=sum(k=0,n,binomial(2*k,k)/(k+1)*binomial(3*(n-k),n-k)/(2*(n-k)+1))

Formula

G.f.: A(x) = C(x)*T(x) where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+2) / ((3^(3/2) + sqrt(11)) * sqrt(Pi) * n^(3/2) * 2^(2*n+1)). - Vaclav Kotesovec, Nov 12 2024

A153291 G.f.: A(x) = F(x*F(x)) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 4, 21, 124, 782, 5145, 34873, 241682, 1704240, 12186900, 88162753, 644058237, 4744733614, 35210349041, 262976828766, 1975324849238, 14913200362138, 113107780322778, 861417424802187, 6585224638006020, 50515048389265713
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = F(x*F(x)) = 1 + x + 4*x^2 + 21*x^3 + 124*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+k,n-k)*k/(3*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n-2k,n-k)*k/(3n-2k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*F(x)*A(x)^3 where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/G(x)) = F(x) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.
Previous Showing 51-60 of 544 results. Next