A380637
Expansion of e.g.f. exp(x*G(3*x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 19, 703, 39313, 2959921, 280935811, 32221238239, 4336213980673, 670088514363553, 116959281939738451, 22759439305951039231, 4885844614853182749649, 1147088485458553806981073, 292394958982688921734424323, 80420728320326634679448511391
Offset: 0
-
a(n) = if(n==0, 1, 3^(n-1)*(n-1)!*pollaguerre(n-1, 2*n+1, -1/3));
A380640
Expansion of e.g.f. exp(x*G(2*x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 9, 193, 6673, 319521, 19575001, 1461908449, 128828471073, 13086232224193, 1505486837413801, 193477959856396161, 27472294970916814129, 4271180551913140331233, 721640087945607030774393, 131656978622706616938932641, 25795404137789777215960879681, 5402020596794976601680149234049
Offset: 0
-
a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, 2^k*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));
A381905
Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 2, 8, 47, 331, 2570, 21204, 182383, 1617163, 14675783, 135643839, 1272434069, 12083390801, 115934171020, 1122129142754, 10943574296787, 107433077283767, 1060800046515405, 10528321010319417, 104972259713887665, 1050936451974803973, 10560662821468607719
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(n+1, n-k)/(n+3*k+1));
A381906
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 15, 100, 787, 6848, 63583, 617350, 6191888, 63650430, 667043379, 7099806346, 76538663840, 833975952491, 9169925032189, 101616966476850, 1133736002540882, 12724529836447420, 143567856744995568, 1627454706916166076, 18526192807286106198, 211694470334287787868
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+2, n-k)/(n+3*k+1));
A381907
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 4, 25, 197, 1783, 17646, 185622, 2039617, 23149542, 269367631, 3196544816, 38539697456, 470773651286, 5813914938293, 72470441063067, 910587733474165, 11521140613913305, 146659482494039073, 1876975898990490298, 24137070792680577688, 311724732112458291945
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n+3, n-k)/(n+3*k+1));
A381985
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 13, 217, 5937, 223641, 10725433, 625007993, 42883208609, 3386452550689, 302545287708201, 30170153462509545, 3322052185576104049, 400328811249634307249, 52406094009429908677049, 7405663486143907784247481, 1123601498350780798756198209, 182173718779147621454796872769
Offset: 0
A382058
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 5, 67, 1465, 44541, 1735681, 82527439, 4632741905, 299875704697, 21989097804961, 1801520077445331, 163092373817762137, 16168084561101716725, 1741946677697976052577, 202668693570279026375671, 25324088113475137179021601, 3382305512670022948599733233, 480858973986045019386825360577
Offset: 0
-
a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));
A073147
Triangle of numbers {a(n,k), n >= 0, 0<=k<=n} defined by a(0,0)=1, a(n,0)=A001764(n), a(n,n)=A006013(n), a(n,n-1)=A006629(n-1).
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 12, 15, 18, 30, 55, 67, 76, 88, 143, 273, 328, 364, 400, 455, 728, 1428, 1701, 1866, 2010, 2175, 2448, 3876, 7752, 9180, 9999, 10659, 11319, 12138, 13566, 21318, 43263
Offset: 0
{1}, {1,2}, {3,4,7}, {12,15,18,30}, {55,67,76,88,143}, {273,328,364,400,455,728},...
A130579
Convolution of A000108 (Catalan numbers) and A001764 (ternary trees): a(n) = Sum_{k=0..n} C(2k,k) * C(3(n-k),n-k) / [(k+1)(2(n-k)+1)].
Original entry on oeis.org
1, 2, 6, 22, 92, 423, 2087, 10856, 58765, 327877, 1872490, 10890483, 64267612, 383773529, 2314271146, 14071475748, 86165249745, 530862665988, 3288219482754, 20464419717069, 127901478759153, 802421158028657
Offset: 0
-
f:= proc(n) local k; add(binomial(2*k, k)/(k+1)*binomial(3*(n-k), n-k)/(2*(n-k)+1),k=0..n) end proc:
map(f, [$0..25]); # Robert Israel, Nov 12 2024
-
a(n)=sum(k=0,n,binomial(2*k,k)/(k+1)*binomial(3*(n-k),n-k)/(2*(n-k)+1))
A153291
G.f.: A(x) = F(x*F(x)) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 4, 21, 124, 782, 5145, 34873, 241682, 1704240, 12186900, 88162753, 644058237, 4744733614, 35210349041, 262976828766, 1975324849238, 14913200362138, 113107780322778, 861417424802187, 6585224638006020, 50515048389265713
Offset: 0
G.f.: A(x) = F(x*F(x)) = 1 + x + 4*x^2 + 21*x^3 + 124*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+k,n-k)*k/(3*(n-k)+k)))}
Comments