A153399
G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 6, 45, 371, 3225, 29007, 267239, 2506605, 23842644, 229369064, 2227345899, 21801617643, 214862158025, 2130226863222, 21231722675274, 212613977684254, 2138164077605865, 21585420400120710, 218677042735538547
Offset: 0
G.f.: A(x) = F(x*G(x)^3) = 1 + x + 6*x^2 + 45*x^3 + 371*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 102*x^3 + 868*x^4 + 7732*x^5 +...
A(x)^3 = 1 + 3*x + 21*x^2 + 172*x^3 + 1509*x^4 + 13764*x^5 +...
G(x)^3*A(x)^3 = 1 + 6*x + 45*x^2 + 371*x^3 + 3225*x^4 + 29007*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}
A192665
Floor-Sqrt transform of the numbers binomial(3*n,n)/(2*n+1) (A001764).
Original entry on oeis.org
1, 1, 1, 3, 7, 16, 37, 88, 207, 496, 1196, 2900, 7075, 17344, 42693, 105473, 261397, 649638, 1618527, 4041401, 10111385, 25343883, 63627940, 159982510, 402802976, 1015454569, 2562911901, 6475519561, 16377581829, 41459980288, 105047450207, 266375717828, 675980743615
Offset: 0
-
Table[Floor[Sqrt[Binomial[3n,n]/(2n+1)]],{n,0,100}]
-
makelist(floor(sqrt(binomial(3*n,n)/(2*n+1))),n,0,12);
Original entry on oeis.org
1, 1, 6, 60, 770, 11466, 188496, 3325608, 61866090, 1199333850, 24030289140, 494663027040, 10414559269296, 223487031938800, 4874879691748800, 107852781825352080, 2415945569351185530, 54714061423541554650, 1251237165698155135500, 28864572348777684057000
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 770*x^4 + 11466*x^5 + 188496*x^6 + ...
-
a[n_] := CatalanNumber[n] * Binomial[3*n, n]/(2*n+1); Array[a, 20, 0] (* Amiram Eldar, Apr 26 2025 *)
-
A218441[n]:=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)$
makelist(A218441[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
{a(n)=binomial(2*n,n)/(n+1)*binomial(3*n,n)/(2*n+1)}
for(n=0,25,print1(a(n),", "))
A251662
Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764.
Original entry on oeis.org
1, 0, 2, 11, 54, 270, 1427, 7740, 43260, 246620, 1430714, 8414356, 50067107, 300829144, 1822766463, 11124747912, 68328754958, 422030501802, 2619631042664, 16332922043614, 102240109896265, 642312449787030, 4048514844039119, 25594403732709300, 162250238001816845, 1031147983109715120
Offset: 1
G.f.: A(x) = x + 2*x^3 + 11*x^4 + 54*x^5 + 270*x^6 + 1427*x^7 + 7740*x^8 +...
where Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x - x^2:
x-x^2 = A(x*(1-x)^2) + A(x^2*(1-x)^4) + A(x^3*(1-x)^6) + A(x^4*(1-x)^8) +...
-
/* Dirichlet convolution of mu(n) with Ternary numbers A001764: */
{a(n) = sumdiv(n, d, moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1))}
for(n=1, 30, print1(a(n), ", "))
-
/* G.f. satisfies: Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x-x^2. */
{a(n)=local(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(sum(n=1, #A, subst(x*Ser(A), x, (x-2*x^2+x^3 +x*O(x^#A))^n)))[#A]); A[n]}
for(n=1, 30, print1(a(n), ", "))
A347953
G.f.: A(x) = 1/C(-x*T(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, 5042968, 29913676, 179270434, 1083794310, 6601817952, 40479778395, 249646876065, 1547539929810, 9637085582640, 60260786147261, 378212395786511, 2381767469829332, 15045137488662048, 95304451461770250
Offset: 0
-
cx := (1-sqrt(1-4*x))/2/x ;
tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
gf := 1/subs(x=-x*tx^3,cx) ;
taylor(%,x=0,40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
-
CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0,y->1,{x,0,24}][[1]],x]
-
seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021
A381937
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));
A381938
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 9, 52, 380, 3066, 26304, 235314, 2170312, 20487963, 196988392, 1922327792, 18990571724, 189548947601, 1908604524752, 19364096602370, 197761735366804, 2031444188437719, 20974821788118024, 217561484977675026, 2265961977605950416, 23688432825547509283
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(2*k+2, n-k)/(4*k+1));
A381939
G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 4, 13, 74, 568, 4872, 44576, 425936, 4199616, 42404096, 436238592, 4556085248, 48179319808, 514825553408, 5550284218368, 60296483084288, 659417378381824, 7253858445852672, 80209754567786496, 891027699137609728, 9939286070426992640, 111286739309529858048
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(3*k+3, n-k)/(4*k+1));
A381943
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 11, 60, 425, 3426, 29619, 267738, 2497889, 23866056, 232325475, 2295889266, 22971682893, 232248775669, 2368969672183, 24348849065860, 251930963865061, 2621914660411919, 27428338267887815, 288258167672381602, 3042002859317810001, 32222429872821051817
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(n+k+1, n-k)/(4*k+1));
A381944
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 4, 16, 89, 655, 5592, 51594, 499159, 4990821, 51140527, 534152690, 5665496618, 60854697427, 660601882734, 7235771990454, 79870211543625, 887569516968685, 9921579561050637, 111487286796322366, 1258604967618419118, 14268057344239960863, 162358119295068686098
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(n+2*k+2, n-k)/(4*k+1));
Comments