cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 544 results. Next

A153399 G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 6, 45, 371, 3225, 29007, 267239, 2506605, 23842644, 229369064, 2227345899, 21801617643, 214862158025, 2130226863222, 21231722675274, 212613977684254, 2138164077605865, 21585420400120710, 218677042735538547
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^3) = 1 + x + 6*x^2 + 45*x^3 + 371*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 102*x^3 + 868*x^4 + 7732*x^5 +...
A(x)^3 = 1 + 3*x + 21*x^2 + 172*x^3 + 1509*x^4 + 13764*x^5 +...
G(x)^3*A(x)^3 = 1 + 6*x + 45*x^2 + 371*x^3 + 3225*x^4 + 29007*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(3*k+1,k)/(3*k+1) * C(4*n-k,n-k)*3*k/(4*n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^3*A(x)^3 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)) = F(x*F(x)^2) where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/H(x)^2) = F(x*H(x)) where H(x) = 1 + x*H(x)^2 is the g.f. of A000108 (Catalan) and F(x) is the g.f. of A001764.

A192665 Floor-Sqrt transform of the numbers binomial(3*n,n)/(2*n+1) (A001764).

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 37, 88, 207, 496, 1196, 2900, 7075, 17344, 42693, 105473, 261397, 649638, 1618527, 4041401, 10111385, 25343883, 63627940, 159982510, 402802976, 1015454569, 2562911901, 6475519561, 16377581829, 41459980288, 105047450207, 266375717828, 675980743615
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Cf. A001764.

Programs

  • Mathematica
    Table[Floor[Sqrt[Binomial[3n,n]/(2n+1)]],{n,0,100}]
  • Maxima
    makelist(floor(sqrt(binomial(3*n,n)/(2*n+1))),n,0,12);

Formula

a(n) = floor(sqrt(binomial(3*n,n)/(2*n+1))).

A218441 a(n) = A000108(n)*A001764(n).

Original entry on oeis.org

1, 1, 6, 60, 770, 11466, 188496, 3325608, 61866090, 1199333850, 24030289140, 494663027040, 10414559269296, 223487031938800, 4874879691748800, 107852781825352080, 2415945569351185530, 54714061423541554650, 1251237165698155135500, 28864572348777684057000
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Comments

G.f. of A000108, C(x), satisfies: C(x) = 1 + x*C(x)^2;
G.f. of A001764, F(x), satisfies: F(x) = 1 + x*F(x)^3.

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 770*x^4 + 11466*x^5 + 188496*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := CatalanNumber[n] * Binomial[3*n, n]/(2*n+1); Array[a, 20, 0] (* Amiram Eldar, Apr 26 2025 *)
  • Maxima
    A218441[n]:=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)$
    makelist(A218441[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
  • PARI
    {a(n)=binomial(2*n,n)/(n+1)*binomial(3*n,n)/(2*n+1)}
    for(n=0,25,print1(a(n),", "))
    

Formula

a(n) ~ 3^(3*n+1/2)/(2*Pi*n*(n+1)*(2*n+1)) = A086201*3^(3*n+1/2)/(n*(n+1)*(2*n+1)) (using the Stirling approximation for n!). - A.H.M. Smeets, Dec 31 2022

A251662 Dirichlet convolution of Moebius function mu(n) (A008683) with Ternary numbers A001764.

Original entry on oeis.org

1, 0, 2, 11, 54, 270, 1427, 7740, 43260, 246620, 1430714, 8414356, 50067107, 300829144, 1822766463, 11124747912, 68328754958, 422030501802, 2619631042664, 16332922043614, 102240109896265, 642312449787030, 4048514844039119, 25594403732709300, 162250238001816845, 1031147983109715120
Offset: 1

Views

Author

Paul D. Hanna, Jan 04 2015

Keywords

Examples

			G.f.: A(x) = x + 2*x^3 + 11*x^4 + 54*x^5 + 270*x^6 + 1427*x^7 + 7740*x^8 +...
where Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x - x^2:
x-x^2 = A(x*(1-x)^2) + A(x^2*(1-x)^4) + A(x^3*(1-x)^6) + A(x^4*(1-x)^8) +...
		

Crossrefs

Programs

  • PARI
    /* Dirichlet convolution of mu(n) with Ternary numbers A001764: */
    {a(n) = sumdiv(n, d, moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1))}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. satisfies: Sum_{n>=1} A(x^n*(1-x)^(2*n)) = x-x^2. */
    {a(n)=local(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(sum(n=1, #A, subst(x*Ser(A), x, (x-2*x^2+x^3 +x*O(x^#A))^n)))[#A]); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: Sum_{n>=1} A((x - 2*x^2 + x^3)^n) = x - x^2.
a(n) = Sum_{d|n} Moebius(n/d) * binomial(3*(d-1), d-1)/(2*d-1).

A347953 G.f.: A(x) = 1/C(-x*T(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, 5042968, 29913676, 179270434, 1083794310, 6601817952, 40479778395, 249646876065, 1547539929810, 9637085582640, 60260786147261, 378212395786511, 2381767469829332, 15045137488662048, 95304451461770250
Offset: 0

Views

Author

Alexander Burstein, Nov 02 2021

Keywords

Crossrefs

Programs

  • Maple
    cx := (1-sqrt(1-4*x))/2/x ;
    tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
    gf := 1/subs(x=-x*tx^3,cx) ;
    taylor(%,x=0,40) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
  • Mathematica
    CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0,y->1,{x,0,24}][[1]],x]
  • PARI
    seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021

Formula

G.f.: A(-x*A(x)^3) = 1/A(x).
G.f.: The series reversion of x*A(x)^3 is x*A(-x)^3.
G.f.: A(x) satisfies A(x) = 1 + x*(1 - A(x) + A(x)^2)^3/A(x).
D-finite with recurrence +4*n*(4*n-1)*(4*n+1)*a(n) +6*(-342*n^3+1233*n^2-1453*n+542)*a(n-1) +243*(n-2)*(33*n^2-123*n+112)*a(n-2) +2187*(n-3)*(3*n-4)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 20 2023

A381937 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k+1,n-k)/(4*k+1).
a(n) = A365178(n) + A365178(n-1).

A381938 G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 9, 52, 380, 3066, 26304, 235314, 2170312, 20487963, 196988392, 1922327792, 18990571724, 189548947601, 1908604524752, 19364096602370, 197761735366804, 2031444188437719, 20974821788118024, 217561484977675026, 2265961977605950416, 23688432825547509283
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(2*k+2, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(2*k+2,n-k)/(4*k+1).
a(n) = A381785(n) + A381785(n-1).

A381939 G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 13, 74, 568, 4872, 44576, 425936, 4199616, 42404096, 436238592, 4556085248, 48179319808, 514825553408, 5550284218368, 60296483084288, 659417378381824, 7253858445852672, 80209754567786496, 891027699137609728, 9939286070426992640, 111286739309529858048
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(3*k+3, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(3*k+3,n-k)/(4*k+1).
a(n) = A367641(n) + A367641(n-1).

A381943 G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 11, 60, 425, 3426, 29619, 267738, 2497889, 23866056, 232325475, 2295889266, 22971682893, 232248775669, 2368969672183, 24348849065860, 251930963865061, 2621914660411919, 27428338267887815, 288258167672381602, 3042002859317810001, 32222429872821051817
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Partial sums of A364592.
Cf. A001764.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(n+k+1, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(n+k+1,n-k)/(4*k+1).

A381944 G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 16, 89, 655, 5592, 51594, 499159, 4990821, 51140527, 534152690, 5665496618, 60854697427, 660601882734, 7235771990454, 79870211543625, 887569516968685, 9921579561050637, 111487286796322366, 1258604967618419118, 14268057344239960863, 162358119295068686098
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(n+2*k+2, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(n+2*k+2,n-k)/(4*k+1).
Previous Showing 61-70 of 544 results. Next