cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012

A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.

Original entry on oeis.org

1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0

Views

Author

Peter Luschny, Sep 23 2024

Keywords

Comments

Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025

Examples

			Triangle starts:
  [0]     1;
  [1]     6,     1;
  [2]    25,     7,     1;
  [3]    88,    32,     8,    1;
  [4]   280,   120,    40,    9,    1;
  [5]   832,   400,   160,   49,   10,    1;
  [6]  2352,  1232,   560,  209,   59,   11,   1;
  [7]  6400,  3584,  1792,  769,  268,   70,  12,  1;
  [8] 16896,  9984,  5376, 2561, 1037,  338,  82, 13,  1;
  [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1;
  ...
Seen as an array of the columns:
  [0] 1,  6, 25,  88,  280,  832,  2352,  6400,  16896, ...
  [1] 1,  7, 32, 120,  400, 1232,  3584,  9984,  26880, ...
  [2] 1,  8, 40, 160,  560, 1792,  5376, 15360,  42240, ...
  [3] 1,  9, 49, 209,  769, 2561,  7937, 23297,  65537, ...
  [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ...
  [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ...
  [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
		

Crossrefs

Column k: A055585 (k=0), A001794 (k=1), A001789 (k=2), A027608 (k=3), A055586 (k=4).
Cf. A145018 (diagonal n-2), A375549 (row sums), A049612 (alternating row sums), A122433.

Programs

  • Maple
    T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1);
    for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od;
    # As a binomial sum:
    T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k):
    for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od;
    # Alternative, generating the array of the columns:
    cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4:
    ser := (k, len) -> series(cgf(k), x, len + 2):
    Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len):
    seq(lprint([k], Tcol(k, 8)), k = 0..6);

Formula

T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.

A276985 Triangle read by rows: T(n,k) = number of k-dimensional elements in an n-dimensional cross-polytope, n>=1, 0<=k

Original entry on oeis.org

2, 4, 4, 6, 12, 8, 8, 24, 32, 16, 10, 40, 80, 80, 32, 12, 60, 160, 240, 192, 64, 14, 84, 280, 560, 672, 448, 128, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120
Offset: 1

Views

Author

Felix Fröhlich, Sep 24 2016

Keywords

Comments

It appears that this is 2*A193862 (but with a different offset) and that the sum of terms of the n-th row is A024023(n) = 3^n - 1. - Michel Marcus, Sep 29 2016

Examples

			T(4, 1..4) = 8, 24, 32, 16, because the 16-cell has 8 0-faces (vertices), 24 1-faces (edges), 32 2-faces (faces) and 16 3-faces (cells).
Triangle starts
2
4, 4
6, 12, 8
8, 24, 32, 16
10, 40, 80, 80, 32
12, 60, 160, 240, 192, 64
14, 84, 280, 560, 672, 448, 128
16, 112, 448, 1120, 1792, 1792, 1024, 256
18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
		

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486141589.

Crossrefs

Cf. A038207 (hypercube), A135278 (simplex).
Rows: A005843(n), A046092(n), A130809(n+2), A130810(n+3).
Columns: A000079(n), A001787(n), A001788(n), A001789(n+3).

Programs

  • Mathematica
    Table[2^(k + 1) Binomial[n, k + 1], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Sep 25 2016 *)
  • PARI
    T(n, k) = 2^(k+1)*binomial(n, k+1)
    trianglerows(n) = for(x=1, n, for(y=0, x-1, print1(T(x, y), ", ")); print(""))
    trianglerows(10) \\ print initial 10 rows of triangle

Formula

T(n,k) = 2^(k+1) * binomial(n, k+1) (cf. Coxeter, 1973, formula 7.22).
T(n,k) = A182059(n,k) = A013609(n,k) . - R. J. Mathar, May 03 2017
G.f.: 2*x/((1 - x)*(1 - x - 2*x*y)). - Stefano Spezia, Jul 17 2025
Previous Showing 31-33 of 33 results.