A327990
The Fibonacci Codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).
Original entry on oeis.org
0, 1, 3, 1, 7, 3, 1, 9, 15, 7, 3, 1, 19, 17, 31, 9, 15, 7, 3, 1, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1, 43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1
Offset: 0
The Fibonacci codes start:
[0] [[]]
[1] [[0]]
[2] [[00][0]]
[3] [[000][00][0]]
[4] [[010][0000][000][00][0]]
[5] [[0010][0100][00000][010][0000][000][00][0]]
[6] [[0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]]
[7] [[00110][01010][000010][01100][000100][001000][010000][0000000][0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]]
The encoding of the Fibonacci codes start:
[0] [0]
[1] [1]
[2] [3, 1]
[3] [7, 3, 1]
[4] [9, 15, 7, 3, 1]
[5] [19, 17, 31, 9, 15, 7, 3, 1]
[6] [21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1]
[7] [43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1]
-
@cached_function
def FibonacciCodes(n):
if n == 0 : return [[]]
if n == 1 : return [[0]]
A = [c.conjugate() for c in Compositions(n) if not(1 in c)]
B = [[i-1 for i in a] for a in A]
return B + FibonacciCodes(n-1)
def A327990row(n):
FC = FibonacciCodes(n)
B = lambda C: sum((c+1)*2^i for (i, c) in enumerate(C))
return [B(c) for c in FC]
for n in (0..6): print(A327990row(n))
A129762
Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2].
Original entry on oeis.org
1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216
Offset: 1
-
[Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011
-
Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ], {n,1,30} ]
Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n,1,50} ]
LinearRecurrence[{9,-26,24,6,-14,1,1},{1,13,104,615,3149,14912,67537},30] (* Harvey P. Dale, Aug 22 2021 *)
A327991
The complementary Fibonacci codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).
Original entry on oeis.org
1, 2, 2, 6, 2, 6, 30, 2, 6, 30, 10, 210, 2, 6, 30, 10, 210, 42, 70, 2310, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510
Offset: 0
The complementary Fibonacci codes start:
[0] [[]]
[1] [[1]]
[2] [[1][11]]
[3] [[1][11][111]]
[4] [[1][11][111][101][1111]]
[5] [[1][11][111][101][1111][1101][1011][11111]]
[6] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111]]
[7] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111] [11001][10101][111101][10011][111011][110111][101111][1111111]]
The representation of the complementary Fibonacci codes starts:
[0] [1]
[1] [2]
[2] [2, 6]
[3] [2, 6, 30]
[4] [2, 6, 30, 10, 210]
[5] [2, 6, 30, 10, 210, 42, 70, 2310]
[6] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030]
[7] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510]
The diagonal is
A002110 (primorial numbers).
-
@cached_function
def FibonacciCodes(n):
if n == 0 : return [[]]
if n == 1 : return [[1]]
A = [c.conjugate() for c in Compositions(n) if not(1 in c)]
return FibonacciCodes(n-1) + [[2-i for i in a] for a in A]
def A327991row(n):
P = Primes()
M = lambda C: mul(P[i]^c for (i, c) in enumerate(C))
return [M(c) for c in FibonacciCodes(n)]
for n in (0..7): print(A327991row(n))
A335184
a(n) is the number of subsets of {1,2,...,n} with at least two elements and the difference between successive elements at least 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 40, 55, 75, 101, 134, 176, 230, 300, 391, 509, 661, 856, 1106, 1427, 1840, 2372, 3057, 3938, 5070, 6524, 8392, 10793, 13880, 17849, 22951, 29508, 37934, 48762, 62678, 80564, 103553, 133100, 171074, 219877, 282597, 363204, 466801, 599946, 771066, 990990
Offset: 0
a(11) = 15 and the 15 subsets of {1,2,...11} with at least two elements and whose difference between successive elements is at least 6 are: {1,7}, {1,8}, {1,9}, {1,10}, {1,11}, {2,8}, {2,9}, {2,10}, {2,11}, {3,9}, {3,10}, {3,11}, {4,10}, {4,11}, {5,11}.
-
With[{k = 6}, Array[Count[Subsets[Range[# + k], {2, # + k}], ?(AllTrue[Differences@ #, # >= k &] &)] &, 16]] (* _Michael De Vlieger, Jun 26 2020 *)
LinearRecurrence[{3,-3,1,0,0,1,-2,1},{0,0,0,0,0,0,0,1},60] (* Harvey P. Dale, Nov 22 2022 *)
-
a(n) = {my(d=6); sum(k=0, (n-1)\d, binomial(n-d*k+k+1, k+2))} \\ Andrew Howroyd, Aug 11 2020
Comments