cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A196665 Expansion of g.f. (1-6*x)/(1-19*x).

Original entry on oeis.org

1, 13, 247, 4693, 89167, 1694173, 32189287, 611596453, 11620332607, 220786319533, 4194940071127, 79703861351413, 1514373365676847, 28773093947860093, 546688785009341767, 10387086915177493573, 197354651388372377887, 3749738376379075179853
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Formula

a(0) = 1, a(n) = 13*19^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*6^k.
From Elmo R. Oliveira, Mar 18 2025: (Start)
E.g.f.: (13*exp(19*x) + 6)/19.
a(n) = 19*a(n-1) for n > 1. (End)

A092898 Expansion of (1 - 4*x + 4*x^2 - 4*x^3)/(1 - 4*x).

Original entry on oeis.org

1, 0, 4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 0

Views

Author

Paul Barry, Mar 12 2004

Keywords

Comments

Partial sums are A092896.

Crossrefs

Programs

  • Magma
    [1,0,4] cat [3*4^(n-2): n in [3..30]]; // G. C. Greubel, Feb 21 2021
  • Maple
    a:= n-> 3*4^n/16+13*0^n/16+add(binomial(n,k)*(-1)^k*(3*k/4+k*(k-1)/2), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2018
  • Mathematica
    Join[{1, 0, 4}, LinearRecurrence[{4}, {12}, 22]] (* Jean-François Alcover, Sep 16 2019 *)
  • PARI
    Vec((1 -4*x +4*x^2 -4*x^3)/(1-4*x) + O(x^30)) \\ Andrew Howroyd, Nov 03 2018
    
  • Sage
    [1,0,4]+[3*4^(n-2) for n in (3..30)] # G. C. Greubel, Feb 21 2021
    

Formula

a(n+2) = 4 * A002001(n).
a(n) = (3*4^n + 13*0^n)/16 + Sum_{k=0..n} binomial(n, k)*(-1)^k*(3*k/4 + k*(k-1)/2).
G.f.: 1 - x + 8*x^2 + 2*x/G(0), where G(k) = 1 + 1/(1 - x*(3*k+4)/(x*(3*k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
a(n) = A110594(n-1) for n >= 2. - Georg Fischer, Nov 03 2018
From G. C. Greubel, Feb 21 2021: (Start)
a(n) = (3*4^n +16*[n=2] -12*[n=1] +13*0^n)/16.
E.g.f.: (13 -12*x + 8*x^2 + 3*exp(4*x))/16. (End)

A175880 a(1)=1, a(2)=2. If n >= 3: if n/2 is in the sequence, a(n)=0, otherwise a(n)=n.

Original entry on oeis.org

1, 2, 3, 0, 5, 0, 7, 8, 9, 0, 11, 12, 13, 0, 15, 0, 17, 0, 19, 20, 21, 0, 23, 0, 25, 0, 27, 28, 29, 0, 31, 32, 33, 0, 35, 36, 37, 0, 39, 0, 41, 0, 43, 44, 45, 0, 47, 48, 49, 0, 51, 52, 53, 0, 55, 0, 57, 0, 59, 60, 61, 0, 63, 0, 65, 0, 67, 68, 69, 0, 71, 0, 73, 0, 75, 76, 77, 0, 79, 80
Offset: 1

Views

Author

Adriano Caroli, Dec 05 2010

Keywords

Comments

If n > 0 and n is in the sequence, then a(2*n) = 0. Example: 5 is in the sequence, so a(2*5) = a(10) = 0.
Is this a(n) = n*A039982(n-1), n > 1? [R. J. Mathar, Dec 07 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a175880 n = a175880_list !! (n-1)
    a175880_list = 1 : f [2..] [2..] where
       f (x:xs) (y:ys) | x == y    = x : (f xs $ delete (2*x) ys)
                       | otherwise = 0 : (f xs (y:ys))
    for_bFile = take 10000 a175880_list
    -- Reinhard Zumkeller, Feb 09 2011
  • Maple
    A110654 := proc(n) 2*n+1-(-1)^n ; %/4 ;end proc:
    A175880 := proc(n) if n <=2 then n; else if type(n,'even') then n-2*procname(A110654(n)) ; else n; end if; end if; end proc:
    seq(A175880(n),n=1..40) ; # R. J. Mathar, Dec 07 2010

Formula

a(n) = n - (1 + (-1)^n) * a((2*n + 1 - (-1)^n)/4), n >= 3.
a(n) = n - A010673(n+1)*a(A110654(n)).

A196666 Expansion of g.f. (1 - 7*x)/(1 - 22*x).

Original entry on oeis.org

1, 15, 330, 7260, 159720, 3513840, 77304480, 1700698560, 37415368320, 823138103040, 18109038266880, 398398841871360, 8764774521169920, 192825039465738240, 4242150868246241280, 93327319101417308160, 2053201020231180779520, 45170422445085977149440
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Programs

Formula

a(0) = 1, a(n) = 15*22^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*7^k.
From Elmo R. Oliveira, Mar 25 2025: (Start)
E.g.f.: (15*exp(22*x) + 7)/22.
a(n) = 22*a(n-1) for n > 1. (End)

A196731 Expansion of g.f. (1-x)/(1-12*x).

Original entry on oeis.org

1, 11, 132, 1584, 19008, 228096, 2737152, 32845824, 394149888, 4729798656, 56757583872, 681091006464, 8173092077568, 98077104930816, 1176925259169792, 14123103110037504, 169477237320450048, 2033726847845400576, 24404722174144806912, 292856666089737682944, 3514279993076852195328
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A193722(n,k)*9^(n-k).
a(n+1) = 12*a(n) for n > 0. - M. F. Hasler, Oct 05 2011
From Elmo R. Oliveira, Mar 18 2025: (Start)
a(n) = 11*12^(n-1) with a(0)=1.
E.g.f.: (11*exp(12*x) + 1)/12. (End)

Extensions

More terms from Elmo R. Oliveira, Mar 25 2025

A067327 Triangle related to generalized Catalan numbers A064340.

Original entry on oeis.org

1, 1, 3, 4, 12, 12, 28, 84, 96, 48, 256, 768, 912, 576, 192, 2704, 8112, 9792, 6720, 3072, 768, 31168, 93504, 113856, 81408, 42240, 15360, 3072, 380608, 1141824, 1397760, 1023744, 568320, 242688, 73728
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

The row polynomials Z(2,2; n,y)= sum(a(n,m)*y^m,m=0..n) appear in c(2,2; x) (the g.f. of C(2,2; n) := A064340(n)) with the first (n+1) expansion terms subtracted, as follows: c(2,2; x)-sum(C(2,2; k)*x^k,k=0..n) = x^(n+1)*G(2,2; x)*Z(2,2; n,y), n>=0, where y=c(4*x) and c(x) is the g.f. of A000108 (Catalan) and G(2,2; x) is the g.f. of C(2,2; n+1), that is G(2,2; x)= (c(2,2; x)-1)/x. Hence G(2,2; x)*Z(2,2; k,c(4*x)) is, for k=0,1,..., the g.f. for C(2,2; n+k), n>=0.
Column sequences are: A064340(n), 3*A064340(n+1), Main diagonal gives A002001(n). Row sums give C(2,2; n+1)= A064340(n+1).

Crossrefs

Cf. A067328 (scaled triangle with 1's in main diagonal).

Formula

a(n, 0)= C(2, 2; n) := A064340(n), n>=0; a(n, 1)= 3*C(2, 2; n), n>=1; a(n, m)=4*sum(a(n-1, k), k=(m-1)..(n-1)) if n>=m>=2, else 0.

A067328 Scaled triangle A067327.

Original entry on oeis.org

1, 1, 1, 4, 4, 1, 28, 28, 8, 1, 256, 256, 76, 12, 1, 2704, 2704, 816, 140, 16, 1, 31168, 31168, 9488, 1696, 220, 20, 1, 380608, 380608, 116480, 21328, 2960, 316, 24, 1, 4840960, 4840960, 1486784, 276544, 40016
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Formula

a(n, m)=A067327(n, m)/A067327(m, m), with A067327(m, m)=A002001(n), n>=m>=0, else 0.

A069946 Numbers k such that phi(k) mod core(k) = 1 where core(k) is the squarefree part of k.

Original entry on oeis.org

2, 12, 48, 60, 63, 75, 175, 192, 363, 405, 468, 704, 768, 816, 867, 891, 960, 980, 1008, 1020, 1587, 1875, 2023, 2107, 2331, 2475, 2523, 2527, 2800, 2835, 3072, 3075, 3185, 3332, 3757, 4100, 4335, 4477, 4851, 5043, 5780, 6171, 6292, 6627, 6727, 6877, 7220
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

This sequence is infinite. For example, 3*4^k is a term for all k > 0, since core(3*4^k) = 3, phi(3*4^k) = 4^k and 4^k == 1 (mod 3). - Amiram Eldar, Sep 03 2020

Crossrefs

Programs

  • Mathematica
    core[n_] := Times @@ (First[#]^Mod[Last[#], 2] & /@ FactorInteger[n]); Select[Range[10^4], Mod[EulerPhi[#], core[#]] == 1 &] (* Amiram Eldar, Sep 03 2020 *)
  • PARI
    for(n=1,15000,if(eulerphi(n)%core(n)==1,print1(n,",")))

Extensions

Name corrected by Amiram Eldar, Sep 05 2020

A096646 Triangle (read by rows) where the number of row entries increases by steps of 2 and the entries are stacked in a rectangular fashion. The end entries = 1. Rest of entries in the n-th row are the sum of the entries directly above and to the left and right in all previous rows (total of 3*(n-1) entries).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 11, 14, 11, 5, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1
Offset: 1

Views

Author

Gerald McGarvey, Aug 14 2004

Keywords

Comments

The row sums are 1,3, then 2^(2*(n-2)) * 3. (I.e., A002001 a(n) = 3*4^(n-1), n>0; a(0)=1.) The n-th row is the (2n-1)st row of A072405 (Triangle of C(n,k)-C(n-2,k-1)).

Examples

			......................1....................
..................1...1...1................
..............1...3...4...3...1............
..........1...5..11..14..11...5...1........
......1...7..22..41..50..41..22...7..1.....
...1..9..37..92.154.182.154..92..37..9..1..
1.11.56.175.375.582.672.582.375.175.56.11.1
		

Crossrefs

Formula

G.f.: 1/[(1-z(1+w+w^2))(1-wz)]. Partial sums of trinomial array A027907. - Ralf Stephan, Jan 09 2005

A099489 Expansion of (1-x+x^2)/((1+x^2)(1-4x+x^2)).

Original entry on oeis.org

1, 3, 11, 42, 157, 585, 2183, 8148, 30409, 113487, 423539, 1580670, 5899141, 22015893, 82164431, 306641832, 1144402897, 4270969755, 15939476123, 59486934738, 222008262829, 828546116577, 3092176203479, 11540158697340
Offset: 0

Views

Author

Paul Barry, Oct 18 2004

Keywords

Comments

A Chebyshev transform of the sequence A002001 which has with g.f. (1-x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2)/((1+x^2)(1-4x+x^2)),{x,0,30}],x] (* or *_)
    LinearRecurrence[{4,-2,4,-1},{1,3,11,42},30] (* Harvey P. Dale, Dec 28 2019 *)

Formula

a(n) = 4*a(n-1)-2*a(n-2)+4*a(n-3)-a(n-4). - corrected by Matthew House, Oct 22 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(3*4^(n-2*k)+0^(n-2*k))/4.
a(n) = Sum_{k=0..n} (0^k-sin(Pi*k/2))*((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3)).
a(n) = Sum_{k=0..n} (0^k-sin(Pi*k/2))*A001353(n-k+1).
a(n) = 3*A001353(n+1)/4 +A056594(n)/4. - R. J. Mathar, Sep 21 2012
Previous Showing 31-40 of 46 results. Next