A191365
Expansion of e.g.f. (1/(1-x))^exp(x).
Original entry on oeis.org
1, 1, 4, 18, 102, 695, 5485, 49077, 490308, 5404569, 65106103, 850535477, 11972432846, 180605413001, 2906109200293, 49678357272247, 898988188301320, 17167497793440977, 344991795682802331, 7277230501449340417, 160765066207998479698
Offset: 0
-
CoefficientList[Series[(1/(1-x))^Exp[x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 21 2013 *)
-
a(n):=sum(sum(binomial(n,i)*k^i*(-1)^(n-k-i)*stirling1(n-i,k),i,0,n-k),k,1,n);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(x))) \\ Seiichi Manyama, May 03 2022
A052863
Expansion of e.g.f. log(-1/(-1+x))*exp(x) - log(-1/(-1+x)).
Original entry on oeis.org
0, 0, 2, 6, 18, 65, 295, 1652, 11032, 85353, 749203, 7347384, 79564496, 942541041, 12121319327, 168145213732, 2502276609008, 39761200642225, 671855234838915, 12028625060491336, 227451564319791336, 4529507975800063337, 94751047516476943359, 2077192015403191663844
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),C=Cycle(Z),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[Log[-1/(-1+x)]*E^x-Log[-1/(-1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
-
my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-log(1-x)*(exp(x)-1)))) \\ Seiichi Manyama, May 13 2022
-
a(n) = sum(k=0, n-2, k!*binomial(n, k+1)); \\ Seiichi Manyama, May 13 2022
A177699
Expansion of e.g.f. log(1+x) * sinh(x).
Original entry on oeis.org
0, 0, 2, -3, 12, -40, 190, -1071, 7224, -56232, 495898, -4880755, 53005700, -629398848, 8110146070, -112690225935, 1679413757168, -26719024870576, 451969255722162, -8099650628337987, 153288815339260796, -3054957193416951480, 63949589015139119598, -1402819397613793354063
Offset: 0
log(1+x) * sinh(x) = x^2 -x^3/2 +x^4/2 -x^5/3 +19*x^6/72 -17*x^7/80 +...
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
-
A177699 := proc(n)
log(1+x)*sinh(x) ;
coeftayl(%,x=0,n)*n! ;
end proc;
seq(A177699(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
-
Table[n ((-1)^n HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] + HypergeometricPFQ[{1, 1, 1 - n}, {2}, 1])/2, {n, 1, 20}] (* Benedict W. J. Irwin, May 30 2016 *)
-
a(n) = (-1)^n*sum(k=1, n\2, (n-2*k)!*binomial(n, 2*k-1)); \\ Seiichi Manyama, Feb 12 2025
A346395
Expansion of e.g.f. -log(1 - x) * exp(3*x).
Original entry on oeis.org
0, 1, 7, 38, 192, 969, 5115, 29322, 187992, 1370745, 11392839, 107043606, 1122823944, 12989320785, 164040593067, 2243143392138, 32994768719376, 519229765892241, 8701862242296807, 154700700117472422, 2907409255935736752, 57588370882960384377, 1198954118077558162875
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[3 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[3^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i+2)*v[i]-3*(i-1)*v[i-1]+3^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A001338
-1 + Sum (k-1)! C(n,k), k = 1..n for n > 0, a(0) = 1.
Original entry on oeis.org
1, 0, 2, 7, 23, 88, 414, 2371, 16071, 125672, 1112082, 10976183, 119481295, 1421542640, 18348340126, 255323504931, 3809950977007, 60683990530224, 1027542662934914, 18430998766219335, 349096664728623335, 6962409983976703336, 145841989688186383358
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Join[{1}, Table[-1 + Sum[(k - 1)! Binomial[n, k], {k, n}], {n, 20}]] (* T. D. Noe, Jun 28 2012 *)
A260323
Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=-1.
Original entry on oeis.org
1, 3, 2, 8, 6, 6, 24, 24, 24, 24, 89, 80, 60, 120, 120, 415, 450, 480, 360, 720, 720, 2372, 2142, 2730, 840, 2520, 5040, 5040, 16072, 17696, 10416, 21840, 6720, 20160, 40320, 40320, 125673, 112464, 151704, 184464, 15120, 60480, 181440, 362880, 362880
Offset: 1
Triangle begins:
1,
3,2,
8,6,6,
24,24,24,24,
89,80,60,120,120,
415,450,480,360,720,720,
2372,2142,2730,840,2520,5040,5040,
...
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
-
A260323 := proc(n,r)
if r = 0 then
1 ;
elif n > r+1 then
0 ;
else
add( 1/(r-j*n)!/j,j=1..(r)/n) ;
%*r! ;
end if;
end proc:
for r from 1 to 20 do
for n from 1 to r do
printf("%a,",A260323(n,r)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 24 2015
-
T[n_, k_] := If[n == 0, 1, If[k > n+1, 0, Sum[1/(n - j*k)!/j, {j, 1, n/k}]]]*n!;
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)
A346394
Expansion of e.g.f. -log(1 - x) * exp(2*x).
Original entry on oeis.org
0, 1, 5, 20, 78, 324, 1520, 8336, 53872, 405600, 3492416, 33798016, 362543104, 4264455168, 54540715008, 753246711808, 11168972683264, 176937613586432, 2982069587042304, 53271637651996672, 1005385746384846848, 19987620914387812352, 417489079682758213632
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[2^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i+1)*v[i]-2*(i-1)*v[i-1]+2^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A346396
Expansion of e.g.f. -log(1 - x) * exp(4*x).
Original entry on oeis.org
0, 1, 9, 62, 390, 2384, 14680, 93680, 635824, 4697664, 38442112, 351331584, 3582715136, 40476303360, 501863078912, 6767130867712, 98464775493632, 1536203429306368, 25564684461735936, 451816479967608832, 8448863295040978944, 166627401783086415872, 3455980532191764676608
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[4 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[4^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i+3)*v[i]-4*(i-1)*v[i-1]+4^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A353546
Expansion of e.g.f. -log(1-2*x) * exp(x)/2.
Original entry on oeis.org
0, 1, 4, 17, 96, 729, 7060, 83033, 1146656, 18164625, 324488068, 6450956929, 141233271872, 3376008830505, 87480173354964, 2442396780039817, 73089894980585408, 2333809837398044321, 79198287879591647364, 2846319497398561356913
Offset: 0
Essentially partial sums of
A010844.
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-2*x)*exp(x)/2)))
-
a(n) = n!*sum(k=0, n-1, 2^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(2*i-1)*v[i]-2*(i-1)*v[i-1]+1); v;
A353547
Expansion of e.g.f. -log(1-3*x) * exp(x)/3.
Original entry on oeis.org
0, 1, 5, 30, 256, 2969, 43665, 776194, 16159304, 385353945, 10353609253, 309401268494, 10177974023448, 365446593201793, 14220922741157249, 596150920955286402, 26783000840591098288, 1283751796983110068817, 65389160400251577565797
Offset: 0
Essentially partial sums of
A010845.
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-3*x)*exp(x)/3)))
-
a(n) = n!*sum(k=0, n-1, 3^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(3*i-2)*v[i]-3*(i-1)*v[i-1]+1); v;
Comments