cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A059422 Difference between number of even equivalence classes and odd classes of terms in a symmetric determinant of order n.

Original entry on oeis.org

1, 1, 0, -1, -1, 3, -2, 25, -213, 1547, -13276, 129069, -1375775, 16009741, -202184274, 2753591087, -40231298023, 627731583225, -10418193719432, 183264681827863, -3406106373633009, 66695477905719251, -1372395141298236250, 29607108539572186329
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a'_n.

Crossrefs

Cf. A002135.

Programs

  • Mathematica
    CoefficientList[Series[E^(1/2*x-1/4*x^2)*(1+x)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)

Formula

E.g.f.: exp(1/2*t-1/4*t^2)*(1+t)^(1/2)
a(n) ~ (-1)^(n+1) * n^(n-1) / (sqrt(2)*exp(n+3/4)). - Vaclav Kotesovec, Oct 07 2013

A167028 Number of terms in the expansion of the determinant of a skew-symmetric matrix of order n.

Original entry on oeis.org

0, 1, 0, 6, 0, 120, 0, 5250, 0, 395010, 0, 45197460, 0, 7299452160, 0, 1580682203100, 0, 441926274289500, 0, 154940341854097800, 0, 66565404923242024800, 0, 34389901168124209507800, 0, 21034386936107260971255000, 0, 15032296693671903309613950000, 0, 12411582569784462888618434640000, 0
Offset: 1

Views

Author

Pietro Majer, Oct 27 2009

Keywords

Comments

If n is odd a(n)=0.
Essentially a duplicate of A002370. - N. J. A. Sloane, Oct 27 2009

Examples

			Example: the determinant of a skew symmetric matrix of order n=4 is
det(A)=A(1,2)A(1,2)A(3,4)A(3,4) + 2A(1,2)A(2,3)A(1,4)A(3,4) -2A(1,2)A(2,4)A(1,3)A(3,4)+ A(1,3)A(1,3)A(2,4)A(2,4)-2A(1,3)A(2,4)A(1,4)A(2,3)+A(1,4)A(1,4)A(2,3)A(2,3).
		

Crossrefs

Programs

  • Maple
    for n from 1 to 20 do a[n]:=n!coeftayl( (1-x^2)^(-1/4)*exp(x^2/4),x=0,n) od;
  • Mathematica
    Rest[CoefficientList[Series[(1-x^2)^(-1/4)*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 15 2015 *)

Formula

Exponential generating function: (1-x^2)^(-1/4) exp(x^2/4).
Asymptotics (for even n): a(n)= (n!/Pi)exp( (-3log(n)+1+log(2))/4 ) GAMMA(3/4) (1+O(1/n)). [corrected by Vaclav Kotesovec, Feb 15 2015]. More elegant form is a(n) ~ n! * 2^(1/4) * exp(1/4) * GAMMA(3/4) / (Pi * n^(3/4)).

A254233 Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.

Original entry on oeis.org

1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0

Views

Author

Tatsuru Murai, Jan 27 2015

Keywords

Examples

			For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
		

Crossrefs

Column k=3 of A257462.

Formula

G.f.: (x^12-x^11+x^10+3*x^9+5*x^8+x^7+4*x^6+x^5+5*x^4+3*x^3+x^2-x+1) / ((x^2+1)*(x^2-x+1)*(x^2+x+1)^3*(x+1)^4*(x-1)^8). - Alois P. Heinz, Apr 21 2015

Extensions

Fixed definition and examples by Kellen Myers, Apr 21 2015
a(14)-a(39) from Alois P. Heinz, Apr 21 2015

A059423 Number of positive terms in a symmetric determinant of order n.

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 193, 1243, 8971, 77039, 711719, 7557974, 85038784, 1075040038, 14252911927, 208885729397, 3187988600057, 53129157538097, 917244939572929, 17127419083026706, 329981266766790136, 6823452191056396526, 145118585159785011041
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, p_n.

Crossrefs

A059424 Number of negative terms in a symmetric determinant of order n.

Original entry on oeis.org

0, 0, 1, 3, 9, 35, 195, 1218, 9184, 75492, 724995, 7428905, 86414559, 1059030297, 14455096201, 206132138310, 3228219898080, 52501425954872, 927663133292361, 16944154401198843, 333387373140423145, 6756756713150677275, 146490980301083247291
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, p_n.

Crossrefs

A260338 Triangle read by rows: Cayley's numbers phi(m,n) (m,n>=0). Row m contains phi(m,0), phi(m-1,1), phi(m-2,2), ..., phi(0,m).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 6, 6, 6, 17, 23, 24, 24, 24, 73, 109, 118, 120, 120, 120, 388, 618, 690, 714, 720, 720, 720, 2461, 4096, 4686, 4926, 5016, 5040, 5040, 5040, 18155, 31133, 36308, 38688, 39768, 40200, 40320, 40320, 40320
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Examples

			Triangle begins:
1,
1,1,
2,2,2,
5,6,6,6,
17,23,24,24,24,
73,109,118,120,120,120,
388,618,690,714,720,720,720,
...
		

Crossrefs

The outer diagonals are A002135, A000142.

Programs

  • Maple
    phi:= proc(m, n) option remember;
            `if`(n+m<2, 1, `if`(n+m=2, 2, m*phi(m-1, n)-
            `if`(n=0, (m-1)*(m-2)/2*phi(m-3, 0), -n*phi(m, n-1))))
          end:
    seq(seq(phi(m-k, k), k=0..m), m=0..10);  # Alois P. Heinz, Jul 30 2015
  • Mathematica
    phi[m_, n_] := phi[m, n] = If[n+m < 2, 1, If[n+m == 2, 2, m*phi[m-1, n] - If[n == 0, (m-1)*(m-2)/2*phi[m-3, 0], -n*phi[m, n-1]]]]; Table[Table[phi[ m-k, k], {k, 0, m}], {m, 0, 10}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

Formula

phi(0,0)=1, phi(1,0)=phi(0,1)=1, phi(2,0)=phi(1,1)=phi(0,2)=2; for m>2, phi(m,0) = m*phi(m-1,0) - (m-1)*(m-2)/2*phi(m-3,0); for m>2, n>0, phi(m,n) = m*phi(m-1,n) + n*phi(m,n-1).

Extensions

More terms from Alois P. Heinz, Jul 30 2015

A002136 Matrices with 2 rows.

Original entry on oeis.org

1, 2, 6, 23, 109, 618, 4096, 31133, 267219, 2557502, 27011734, 312115953, 3916844779, 53053052462, 771450742596, 11986779006647, 198204672604489, 3475110017769282, 64396888392712366, 1257612452945760503, 25815617698822423341, 555708180579477963962, 12517189538209383465496
Offset: 3

Views

Author

Keywords

Comments

a(n) is the number of ways in which a deck with n - 1 matched pairs and two singleton cards may be dealt into n hands of two cards, assuming the order of the hands and the order of the cards in each hand is irrelevant. (See Art of Problem Solving link for proof.) - Joel B. Lewis, Sep 30 2012

Examples

			For n = 3, the a(3) = 6 ways to partition the deck {1, 1, 2, 2, 3, 4} into three pairs are {11, 22, 34}, {12, 12, 34}, {13, 14, 22}, {11, 23, 24}, {12, 13, 24} and {12, 14, 23}. - _Joel B. Lewis_, Sep 30 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    /* b(n) := A002135(n) */
    b(n) = if(n<3, [1,1,2][n+1], n*b(n-1) - (n-1)*(n-2)*b(n-3)/2 );
    c(n) = if(n<3, [1,2][n], b(n-1) + (n-1)*b(n-2) + (n-1)*(n-2)*c(n-2) );
    a(n) = c(n-2);
    /* Joerg Arndt, Apr 07 2013 */

Formula

a(n+1) = A002135(n) + n*A002135(n - 1) + n*(n - 1)*a(n - 1). - Joel B. Lewis, Sep 30 2012
a(n) ~ 2^(3/2) * n^(n-2) / exp(n-3/4). - Vaclav Kotesovec, Apr 27 2015

Extensions

Added more terms, Joerg Arndt, Apr 07 2013

A108704 Number of partitions of 112233...nn into n pairs.

Original entry on oeis.org

1, 1, 4, 18, 126, 1110, 12120, 156660, 2341500, 39701340, 752839920, 15785181720, 362606123880, 9055825538760, 244296192460320, 7079382509799600, 219321853964413200, 7233629128601475600, 253054306933115688000, 9358989706213886138400, 364860828050107348159200
Offset: 0

Views

Author

Miklos Kristof, Jun 20 2005

Keywords

Examples

			Partitions of 1122 into 2 pairs: 11 22, 12 12, 12 21, 21 21 = 4 partitions so a(2)=4.
		

References

  • Laszlo Lovasz, Combinatorial Problems and Solutions, AMS Chelsea Publishing, American Mathematical Society.

Crossrefs

Cf. A002135.

Programs

  • Maple
    a:= n-> n! *coeff(series(exp(x*x/2)/sqrt(1-2*x), x, n+1), x, n):
    seq (a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[E^(x*x/2)/Sqrt[1-2*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 26 2013 *)
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(exp(x*x/2)/sqrt(1-2*x))) \\ G. C. Greubel, May 24 2017

Formula

E.g.f.: exp(x*x/2)/sqrt(1-2*x).
a(n) ~ 2^(n+1/2)*n^n/exp(n-1/8). - Vaclav Kotesovec, Sep 26 2013
a(n) = 2^n*(n-1/2)!*2F2((1-n)/2,-n/2;1/4 -n/2,3/4 - n/2; 1/8)/sqrt(Pi). - Benedict W. J. Irwin, May 25 2016
Conjecture: a(n)-(2*n-1)*a(n-1)-(n-1)*a(n-2)+2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 08 2016
From Emanuele Munarini, May 25 2022: (Start)
The exponential generating series A(t) satisfies the differential equation (1-2*t)*A'(t) = (1+t-2*t^2)*A(t), which is equivalent to the conjectured recurrence.
a(n) = Sum_{k=0..n/2} binomial(n,k)*binomial(2*n-4*k,n-2*k)*(n-k)!/2^(n-k).
(End)
Previous Showing 11-18 of 18 results.