A059422
Difference between number of even equivalence classes and odd classes of terms in a symmetric determinant of order n.
Original entry on oeis.org
1, 1, 0, -1, -1, 3, -2, 25, -213, 1547, -13276, 129069, -1375775, 16009741, -202184274, 2753591087, -40231298023, 627731583225, -10418193719432, 183264681827863, -3406106373633009, 66695477905719251, -1372395141298236250, 29607108539572186329
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a'_n.
-
CoefficientList[Series[E^(1/2*x-1/4*x^2)*(1+x)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
A167028
Number of terms in the expansion of the determinant of a skew-symmetric matrix of order n.
Original entry on oeis.org
0, 1, 0, 6, 0, 120, 0, 5250, 0, 395010, 0, 45197460, 0, 7299452160, 0, 1580682203100, 0, 441926274289500, 0, 154940341854097800, 0, 66565404923242024800, 0, 34389901168124209507800, 0, 21034386936107260971255000, 0, 15032296693671903309613950000, 0, 12411582569784462888618434640000, 0
Offset: 1
Example: the determinant of a skew symmetric matrix of order n=4 is
det(A)=A(1,2)A(1,2)A(3,4)A(3,4) + 2A(1,2)A(2,3)A(1,4)A(3,4) -2A(1,2)A(2,4)A(1,3)A(3,4)+ A(1,3)A(1,3)A(2,4)A(2,4)-2A(1,3)A(2,4)A(1,4)A(2,3)+A(1,4)A(1,4)A(2,3)A(2,3).
-
for n from 1 to 20 do a[n]:=n!coeftayl( (1-x^2)^(-1/4)*exp(x^2/4),x=0,n) od;
-
Rest[CoefficientList[Series[(1-x^2)^(-1/4)*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 15 2015 *)
A254233
Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.
Original entry on oeis.org
1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0
For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
A059423
Number of positive terms in a symmetric determinant of order n.
Original entry on oeis.org
1, 1, 1, 2, 8, 38, 193, 1243, 8971, 77039, 711719, 7557974, 85038784, 1075040038, 14252911927, 208885729397, 3187988600057, 53129157538097, 917244939572929, 17127419083026706, 329981266766790136, 6823452191056396526, 145118585159785011041
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, p_n.
A059424
Number of negative terms in a symmetric determinant of order n.
Original entry on oeis.org
0, 0, 1, 3, 9, 35, 195, 1218, 9184, 75492, 724995, 7428905, 86414559, 1059030297, 14455096201, 206132138310, 3228219898080, 52501425954872, 927663133292361, 16944154401198843, 333387373140423145, 6756756713150677275, 146490980301083247291
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, p_n.
A260338
Triangle read by rows: Cayley's numbers phi(m,n) (m,n>=0). Row m contains phi(m,0), phi(m-1,1), phi(m-2,2), ..., phi(0,m).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 6, 6, 6, 17, 23, 24, 24, 24, 73, 109, 118, 120, 120, 120, 388, 618, 690, 714, 720, 720, 720, 2461, 4096, 4686, 4926, 5016, 5040, 5040, 5040, 18155, 31133, 36308, 38688, 39768, 40200, 40320, 40320, 40320
Offset: 0
Triangle begins:
1,
1,1,
2,2,2,
5,6,6,6,
17,23,24,24,24,
73,109,118,120,120,120,
388,618,690,714,720,720,720,
...
-
phi:= proc(m, n) option remember;
`if`(n+m<2, 1, `if`(n+m=2, 2, m*phi(m-1, n)-
`if`(n=0, (m-1)*(m-2)/2*phi(m-3, 0), -n*phi(m, n-1))))
end:
seq(seq(phi(m-k, k), k=0..m), m=0..10); # Alois P. Heinz, Jul 30 2015
-
phi[m_, n_] := phi[m, n] = If[n+m < 2, 1, If[n+m == 2, 2, m*phi[m-1, n] - If[n == 0, (m-1)*(m-2)/2*phi[m-3, 0], -n*phi[m, n-1]]]]; Table[Table[phi[ m-k, k], {k, 0, m}], {m, 0, 10}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
A002136
Matrices with 2 rows.
Original entry on oeis.org
1, 2, 6, 23, 109, 618, 4096, 31133, 267219, 2557502, 27011734, 312115953, 3916844779, 53053052462, 771450742596, 11986779006647, 198204672604489, 3475110017769282, 64396888392712366, 1257612452945760503, 25815617698822423341, 555708180579477963962, 12517189538209383465496
Offset: 3
For n = 3, the a(3) = 6 ways to partition the deck {1, 1, 2, 2, 3, 4} into three pairs are {11, 22, 34}, {12, 12, 34}, {13, 14, 22}, {11, 23, 24}, {12, 13, 24} and {12, 14, 23}. - _Joel B. Lewis_, Sep 30 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
/* b(n) := A002135(n) */
b(n) = if(n<3, [1,1,2][n+1], n*b(n-1) - (n-1)*(n-2)*b(n-3)/2 );
c(n) = if(n<3, [1,2][n], b(n-1) + (n-1)*b(n-2) + (n-1)*(n-2)*c(n-2) );
a(n) = c(n-2);
/* Joerg Arndt, Apr 07 2013 */
A108704
Number of partitions of 112233...nn into n pairs.
Original entry on oeis.org
1, 1, 4, 18, 126, 1110, 12120, 156660, 2341500, 39701340, 752839920, 15785181720, 362606123880, 9055825538760, 244296192460320, 7079382509799600, 219321853964413200, 7233629128601475600, 253054306933115688000, 9358989706213886138400, 364860828050107348159200
Offset: 0
Partitions of 1122 into 2 pairs: 11 22, 12 12, 12 21, 21 21 = 4 partitions so a(2)=4.
- Laszlo Lovasz, Combinatorial Problems and Solutions, AMS Chelsea Publishing, American Mathematical Society.
-
a:= n-> n! *coeff(series(exp(x*x/2)/sqrt(1-2*x), x, n+1), x, n):
seq (a(n), n=0..20);
-
CoefficientList[Series[E^(x*x/2)/Sqrt[1-2*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 26 2013 *)
-
my(x='x+O('x^50)); Vec(serlaplace(exp(x*x/2)/sqrt(1-2*x))) \\ G. C. Greubel, May 24 2017
Comments