cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 510 results. Next

A253805 a(n) gives one fourth of the even leg of the second of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253804.

Original entry on oeis.org

5, 30, 34, 145, 111, 180, 371, 330, 876, 1560, 1746, 505, 1635, 840, 3014, 3570, 5181, 2249, 1710, 7980, 1379, 3435, 10920, 7230, 2056, 8970, 14490, 11240, 4981, 3900
Offset: 1

Views

Author

Wolfdieter Lang, Jan 16 2015

Keywords

Comments

See A253804 for comments and the Dickson reference.

Examples

			n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253804(7)^2 + (4*a(7))^2 = 2385^2 + (4*371)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253802(7) = 1241 and even leg 4*A253303(7) = 4*630 = 2520: 53^4 = 1241^2 + (4*630)^2.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.

Crossrefs

Formula

a(n) = sqrt(A080109(n)^2 - A253804(n)^2)/4, n >= 1.

A267859 The p-defect p - N(p) of the elliptic curve y^2 = x^3 + x for primes p congruent to 1 modulo 4 (A002144).

Original entry on oeis.org

2, -6, 2, 10, 2, 10, -14, 10, -6, 10, 18, 2, -6, -14, -22, -14, -22, 26, 18, -14, 2, -30, 26, -30, 2, 26, 18, 10, 34, 26, -22, 18, 10, 34, -14, 34, -38, 2, -6, -30, 34, -14, 42, -38, 10, -22, 42, -38, 26, 2, -46, 10, 34, -38, 50, 26, 50, -46, 2, 10, -30, -54, 18, -38, 50, 34, -22, 10, 50, -54
Offset: 1

Views

Author

Wolfdieter Lang, Feb 06 2016

Keywords

Comments

See A002172 for a differently signed sequence.
The number N(p) of solutions modulo a prime p of the elliptic curve y^2 = x^3 + x (of discriminant -4) is given for all p in A095978.
The p-defect a_p = p - N(p) for prime 2 and primes congruent to 3 modulo 4 vanishes.
A002144(n) - (a(n)/2)^2 = (2*A002973(n))^2, n >= 1. See the formula for A095978 for primes 1 (mod 4).
This sequence gives also the non-vanishing p-defects of the elliptic curve y^2 = x^3 - 4*x. See a comment on A138515 with the Martin and Ono link for the modularity series for these two elliptic curves. - Wolfdieter Lang, May 26 2016

Examples

			n = 2: p = A002144(2) = 13 = A000040(6), m = 6, a(2) = 13 - A095978(6) = 13 - 19  = -6.
n = 2:  -6 = A138515((A002144(2) - 1)/4) =
A138515(3) = -6. - _Wolfdieter Lang_, May 26 2016
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 398. In the 4th ed., 2014, p. 371.

Crossrefs

Programs

  • Mathematica
    terms = 100; A002144 = Select[Range[5, 20*terms, 4], PrimeQ]; A095978[n_] := Module[{p, xy, x}, p = Prime[n]; If[n==1 || Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[n_] := (p = A002144[[n]]; m = PrimePi[p]; p - A095978[m]); Array[a, terms] (* Jean-François Alcover, Feb 26 2016, after Robert Israel (A095978) *)

Formula

a(n) = A002144(n) - A095978(m) with A002144(n) = A000040(m), n >= 1.
a(n) = A138515((A002144(n) - 1)/4), n >= 1. - Wolfdieter Lang, May 26 2016

A340388 Let n = p_1*p_2*...*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 5^(p_1 - 1)*13^(p_2 - 1)*17^(p_3 - 1)*...*A002144(k)^(p_k - 1).

Original entry on oeis.org

1, 5, 25, 65, 625, 325, 15625, 1105, 4225, 8125, 9765625, 5525, 244140625, 203125, 105625, 32045, 152587890625, 71825, 3814697265625, 138125, 2640625, 126953125, 2384185791015625, 160225, 17850625, 3173828125, 1221025, 3453125, 37252902984619140625
Offset: 1

Views

Author

Jianing Song, Apr 24 2021

Keywords

Comments

Analog of A037019: this is an easy way to produce a number k such that A002654(k) = n, or equivalently, a number k whose prime factors are all congruent to 1 modulo 4 and with exactly n divisors.

Examples

			12 = 3 * 2 * 2, so a(12) = 5^(3-1) * 13^(2-1) * 17^(2-1) = 5525.
15 = 5 * 3, so a(15) = 5^(5-1) * 13^(3-1) = 105625.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=factor(n), w=omega(n), p=1, product=1); forstep(i=w, 1, -1, for(j=1, f[i,2], p=nextprime(p+1); while(!(p%4==1), p=nextprime(p+1)); product *= p^(f[i,1]-1))); product

Formula

By definition a(n) >= A018782(n) for all n. Note that a(16) = 32045 is strictly larger than A018782(16) = 27625. The "exceptional" numbers k such that a(k) > A018782(k) are listed in A340624.
If n = p for prime p or n = pq for primes p >= q, then a(n) = A018782(n).

A376428 Numbers k that occur as shorter legs of Pythagorean triangles with Pythagorean primes A002144 as hypotenuses.

Original entry on oeis.org

3, 5, 8, 9, 11, 12, 15, 19, 20, 25, 28, 29, 32, 35, 39, 40, 45, 48, 49, 51, 52, 59, 60, 61, 65, 68, 69, 71, 72, 75, 79, 80, 85, 88, 95, 101, 105, 108, 112, 115, 120, 121, 129, 131, 132, 139, 140, 141, 145, 148, 159, 160, 165, 168, 169, 171, 175, 180, 181, 188, 189
Offset: 1

Views

Author

Hugo Pfoertner, Sep 22 2024

Keywords

Comments

Distinct sorted terms of A002366.

Crossrefs

Subsequence of A020884.

A376429 Numbers k that occur as longer legs of Pythagorean triangles with Pythagorean primes A002144 as hypotenuses.

Original entry on oeis.org

4, 12, 15, 21, 35, 40, 45, 55, 60, 72, 80, 91, 99, 105, 112, 132, 140, 165, 168, 180, 195, 208, 209, 221, 231, 252, 255, 260, 272, 275, 285, 288, 299, 308, 312, 325, 340, 351, 380, 391, 399, 408, 420, 425, 440, 459, 465, 520, 532, 551, 552, 572, 575, 589, 595, 600
Offset: 1

Views

Author

Hugo Pfoertner, Sep 22 2024

Keywords

Comments

Distinct sorted terms of A002365.

Crossrefs

Subsequence of A020883.

A080169 Numbers that are cubes of primes of the form 4k+1 (A002144).

Original entry on oeis.org

125, 2197, 4913, 24389, 50653, 68921, 148877, 226981, 389017, 704969, 912673, 1030301, 1295029, 1442897, 2571353, 3307949, 3869893, 5177717, 5929741, 7189057, 7645373, 12008989, 12649337, 13997521, 16974593, 19465109, 21253933
Offset: 1

Views

Author

Cino Hilliard, Mar 16 2003

Keywords

Comments

a(n) is the sum of two squares in exactly two ways (Fermat). See the Dickson reference, (B) on p. 277. - Wolfdieter Lang, Jan 15 2015
a(n) is the hypotenuse of three and only three right triangles with integral arms.
In 1640 Fermat generalized the 3,4,5 triangle with the theorem: A prime of the form 4n+1 is the hypotenuse of one and only one right triangle with integral arms. The square of a prime of the form 4n+1 is the hypotenuse of two and only two... The cube of three and only three... .
See the Dickson reference, (A) on p. 227.

Examples

			a(2) = 2197 is the hypotenuse of the three triangles 825, 2035, 2197; 845, 2028, 2197; 1547, 1560, 2197.
a(2) = 9^2 + 46^2  = 39^2 + 26^2, and these are the only decompositions. - _Wolfdieter Lang_, Jan 15 2015
		

References

  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972, pp. 275-276.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[60]], Mod[#, 4] == 1 &]^3 (* Amiram Eldar, Dec 02 2022 *)
  • PARI
    fermat(n) = { for(x=1,n, y=4*x+1; if(isprime(y),print1(y^3" ")) ) }

Formula

a(n) = A002144(n)^3, n >= 1.
Product_{n>=1} (1 - 1/a(n)) = A334425. - Amiram Eldar, Dec 02 2022

Extensions

Edited: New name, part of old one now as a comment. Dickson reference, formula and cross references added. - Wolfdieter Lang, Jan 15 2015

A102261 a(n) = A002144(n) - A002145(n).

Original entry on oeis.org

2, 6, 6, 10, 14, 10, 10, 14, 14, 22, 26, 22, 26, 10, 30, 22, 26, 34, 30, 30, 30, 50, 42, 42, 46, 46, 50, 42, 42, 50, 46, 54, 42, 42, 42, 42, 38, 34, 30, 38, 14, 18, 18, 18, 46, 54, 62, 70, 78, 78, 90, 78, 66, 54, 70, 66, 62, 66, 58, 70, 66, 86, 98, 78, 78, 54, 70, 70, 78, 78
Offset: 1

Views

Author

Paul Curtz, Sep 06 2008

Keywords

Comments

a(n) = A108546(2*n+1) - A108546(2*n).

Programs

  • Maple
    A002144 := proc(n) option remember ; if n = 1 then RETURN(5) ; fi; for a from procname(n-1)+2 do if isprime(a) and (a mod 4 = 1 ) then RETURN(a) ; fi; od: end; A002145 := proc(n) option remember ; if n = 1 then RETURN(3) ; fi; for a from procname(n-1)+2 do if isprime(a) and (a mod 4 = 3 ) then RETURN(a) ; fi; od: end; A102261 := proc(n) A002144(n)-A002145(n) ; end: seq(A102261(n),n=1..120) ; # R. J. Mathar, Feb 07 2009
  • Mathematica
    nmax = 70; a1 = Select[Range[1, Prime[3*nmax], 4], PrimeQ]; a3 = Select[Range[3, Prime[3*nmax], 4], PrimeQ]; a[n_] := a1[[n]] - a3[[n]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Dec 17 2013 *)

Extensions

Edited by N. J. A. Sloane, Sep 06 2008
More terms from R. J. Mathar, Feb 07 2009

A113601 Intersection of A002144 and A005098.

Original entry on oeis.org

13, 37, 73, 97, 193, 277, 373, 409, 433, 577, 673, 709, 853, 997, 1033, 1093, 1129, 1297, 1429, 1453, 1549, 1597, 1753, 1777, 2017, 2029, 2293, 2437, 2677, 2713, 2953, 3037, 3049, 3109, 3229, 3457, 3469, 3637, 3769, 3793, 3853, 4057, 4273, 4297, 4729
Offset: 1

Views

Author

Zak Seidov, May 27 2007

Keywords

Comments

Primes p of the form 4m+1 such that q=4p+1 is also prime. Corresponding values of m are: 3,9,18,24,48,69,93,102,108,144,168,177,213,249,258,273,282,324,357,363,387,399,438,444,504,507,573,609,669,678,738,759,762,777,807,864,867,909 - all multiples of 3. And corresponding values of q are: 53,149,293,389,773,1109,1493,1637,1733,2309,2693,2837,3413,3989,4133,4373,4517,5189,5717,5813,6197,6389,7013,7109,8069,8117,9173,9749,10709,10853,11813.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[700]],IntegerQ[(#-1)/4]&&PrimeQ[4#+1]&] (* Harvey P. Dale, May 15 2022 *)

A145871 Smallest k such that k^2+1 is divisible by A002144(n)^7.

Original entry on oeis.org

32318, 6826318, 96940388, 7986582530, 24900904028, 92615568742, 416081467190, 988322434636, 3219884218827, 4867146503697, 26457926739667, 47023298541694, 26661771973542, 90980209992989, 257680081342861, 283410689912607
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2008

Keywords

Examples

			a(2) = 6826318 since A002144(2) = 13, 6826318^2+1 = 46598617437125 = 5^3*13^7*13*457 and for no k < 6826318 does 13^7 divide k^2+1. a(4) = 7986582530 since A002144(4) = 29, 7986582530^2+1 = 63785500508501200901 = 29^7*197*409*45893 and for no k < 7986582530 does 29^7 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298, A145299, A145872, A145873.

Programs

  • PARI
    {e=7; forprime(p=2, 40, if(p%4==1, q=p^e; m=q; while(!issquare(m-1, &n), m=m+q); print1(n, ",")))}

Extensions

More terms from Klaus Brockhaus, Nov 12 2008

A145872 Smallest k such that k^2+1 is divisible by A002144(n)^8.

Original entry on oeis.org

110443, 6826318, 3379649772, 61012922706, 1019349744435, 287369842623, 11331029931180, 71294762793847, 239822883201307, 923990886302412, 2369608176604944, 3156215819652023, 521749964271465, 2026364722410364
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2008

Keywords

Examples

			a(1) = 110443 since A002144(1) = 5, 110443^2+1 = 12197656250 = 2*5^8*13*1201 and for no k < 110443 does 5^8 divide k^2+1. a(3) = 3379649772 since A002144(3) = 17, 3379649772^2+1 = 11422032581379651985 = 5*13*17^8*97*259697 and for no k < 3379649772 does 17^8 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298, A145299, A145871, A145873.

Programs

  • PARI
    {e=8; forprime(p=2, 40, if(p%4==1, q=p^e; m=q; while(!issquare(m-1, &n), m=m+q); print1(n, ",")))}

Extensions

More terms from Klaus Brockhaus, Nov 12 2008
Previous Showing 41-50 of 510 results. Next