cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 340 results. Next

A156163 Decimal expansion of (19+6*sqrt(2))/17.

Original entry on oeis.org

1, 6, 1, 6, 7, 8, 1, 2, 5, 7, 3, 0, 8, 1, 5, 1, 1, 9, 3, 6, 9, 4, 7, 1, 3, 6, 6, 7, 3, 6, 8, 1, 2, 8, 7, 3, 3, 6, 1, 2, 8, 2, 5, 3, 6, 7, 7, 8, 0, 0, 9, 9, 3, 1, 9, 9, 4, 4, 7, 1, 0, 4, 9, 5, 7, 6, 1, 4, 3, 4, 9, 9, 2, 3, 9, 8, 3, 9, 0, 7, 1, 9, 5, 9, 4, 2, 5, 4, 4, 2, 3, 8, 8, 0, 3, 4, 4, 0, 8, 4, 4, 9, 4, 7, 1
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}, b = A155923.
lim_{n -> infinity} b(n)/b(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}, b = A156159.

Examples

			(19+6*sqrt(2))/17 = 1.61678125730815119369...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).

Programs

A157697 Decimal expansion of sqrt(2/3).

Original entry on oeis.org

8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
The eccentricity of the ellipse of minimum area that is circumscribing two equal and externally tangent circles (Kotani, 1995). - Amiram Eldar, Mar 06 2022
The standard deviation of a roll of a 3-sided die. - Mohammed Yaseen, Feb 23 2023

Examples

			0.81649658092772603273242802490196379732198249355222...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (168) on page 32.

Crossrefs

Programs

Formula

Equals 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
From Michal Paulovic, Dec 08 2022: (Start)
Equals 2 * A020763.
Has periodic continued fraction expansion [0, 1, 4; 2, 4]. (End)
Equals exp(-arctanh(1/5)). - Amiram Eldar, Jul 10 2023
Equals Product_{k>=1} (1 + (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

A322641 Number of times the digit 0 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

0, 10, 108, 952, 9959, 99814, 999897, 10002237, 100010228, 999996989
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="0" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 0], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322642 Number of times the digit 1 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

2, 7, 98, 1005, 10106, 98924, 1000114, 10000179, 99998381, 1000042849
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="1" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 1], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322643 Number of times the digit 2 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

2, 8, 109, 1004, 9876, 100436, 1000208, 9998091, 99995645, 999987069
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="2" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 2], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322644 Number of times the digit 3 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

2, 11, 82, 980, 10058, 100191, 999674, 10004178, 99995415, 999984900
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="3" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 3], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322645 Number of times the digit 4 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

2, 9, 100, 1016, 10100, 100024, 1000126, 10000054, 100012725, 1000008724
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="4" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 4], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322646 Number of times the digit 5 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

1, 7, 104, 1001, 10002, 100155, 999358, 9998344, 100002636, 999970045
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="5" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 5], {n,1,10}] (* Robert Price, Mar 29 2019 *)

A322647 Number of times the digit 6 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

1, 10, 90, 1032, 9939, 99886, 1001246, 10001665, 100012683, 1000007824
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="6" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 6], {n,1,10}] (* Robert Price, Mar 29 2019 *)
    Table[Count[RealDigits[Sqrt[2],10,10^n][[1]],6],{n,10}] (* Harvey P. Dale, Oct 02 2022 *)

A322648 Number of times the digit 7 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.

Original entry on oeis.org

0, 18, 104, 964, 10008, 100008, 999359, 9998646, 99980315, 999986743
Offset: 1

Views

Author

Martin Renner, Dec 21 2018

Keywords

Comments

It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.

Crossrefs

Programs

  • Maple
    a:=proc(n)
      local digits, SQRT2, C, i;
      digits:=10^n+100;
      SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
      C:=0;
      for i from 1 to length(SQRT2) do
        if SQRT2[i]="7" then C:=C+1; fi;
      od;
      return(C);
    end;
  • Mathematica
    Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 7], {n,1,10}] (* Robert Price, Mar 29 2019 *)
Previous Showing 41-50 of 340 results. Next