cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A105580 a(n+3) = a(n) - a(n+1) - a(n+2); a(0) = -5, a(1) = 6, a(2) = 0.

Original entry on oeis.org

-5, 6, 0, -11, 17, -6, -22, 45, -29, -38, 112, -103, -47, 262, -318, 9, 571, -898, 336, 1133, -2367, 1570, 1930, -5867, 5507, 2290, -13664, 16881, -927, -29618, 47426, -18735, -58309, 124470, -84896, -97883, 307249, -294262, -110870, 712381, -895773, 72522, 1535632, -2503927, 1040817, 2998742
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2tesforseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e], 1vesforseq = A000004, ForType: 1A.

Examples

			This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.]
		

Crossrefs

Programs

  • Mathematica
    Transpose[NestList[Join[Rest[#],ListCorrelate[ {1,-1,-1}, #]]&,{-5,6,0},50]][[1]]  (* Harvey P. Dale, Mar 14 2011 *)
    CoefficientList[Series[(5-x-x^2)/(x^3-x^2-x-1),{x,0,50}],x]  (* Harvey P. Dale, Mar 14 2011 *)

Formula

G.f. (5-x-x^2)/(x^3-x^2-x-1)
a(n) = A078046(n-1) - A073145(n+3).
a(n) = -5*A057597(n+2) + A057597(n+1)+A057597(n). - R. J. Mathar, Oct 25 2022

A105225 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2.

Original entry on oeis.org

1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-3,2},{1,-1,-2},50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1),{x,0,50}],x] (* Harvey P. Dale, Jul 23 2012 *)

Formula

a(n) - a(n+1) = A002249(n).
a(n) = (A002249(n+1) + 1)/2.
From Harvey P. Dale, Jul 23 2012: (Start)
G.f.: -(3*x^2-3*x+1)/((x-1)*(2*x^2-x+1)).
a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n). (End)

A048635 Number of rational points of Klein curve over GF(2^n).

Original entry on oeis.org

0, 14, 24, 14, 0, 38, 168, 350, 528, 854, 1848, 4238, 8736, 16646, 31944, 64190, 131376, 265142, 526680, 1044974, 2088768, 4193126, 8404200, 16795166, 33541200, 67059734, 134195064, 268511054, 536991840, 1073711558, 2147211528
Offset: 1

Views

Author

Keywords

Examples

			G.f. = 14*x^2 + 24*x^3 + 14*x^4 + 38*x^6 + 168*x^7 + 350*x^8 + 528*x^9 + ...
		

References

  • N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. See p. 77 eq. (3.13), (3.14).

Crossrefs

Cf. A002249.

Programs

  • Mathematica
    LinearRecurrence[{4,-7,8,-4},{0,14,24,14},40] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    {a(n) = if( n<1, 0, 2^n + 1 - 3 * polsym(x^2 - x + 2, n)[n+1])}; /* Michael Somos, Nov 09 2014 */

Formula

a(n) = 2^n + 1 - 3*(a^n + b^n), where a, b are roots of X^2 - X + 2 = 0.
From Colin Barker, Aug 01 2013: (Start)
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4).
G.f.: 2*x^2*(8*x^2-16*x+7) / ((x-1)*(2*x-1)*(2*x^2-x+1)). (End)

A307988 T(n, k) the number of A-polynomials in F_2^k[T] of degree n, array read by descending antidiagonals.

Original entry on oeis.org

1, 2, 1, 1, 2, 0, 4, 7, 4, 1, 11, 36, 42, 18, 2, 14, 121, 344, 259, 48, 2, 29, 518, 2750, 4068, 1652, 172, 4, 72, 2059, 21924, 65461, 52368, 10962, 588, 9, 127, 8136, 174986, 1048950, 1677940, 699288, 74998, 2034, 14, 242, 32893, 1398576, 16778791, 53686584, 44738782, 9587880, 524475, 7308, 24
Offset: 1

Views

Author

Michel Marcus, May 22 2019

Keywords

Examples

			Array begins:
1   2     1       4         11           14             29
1   2     7      36        121          518           2059
0   4    42     344       2750        21924         174986
1  18   259    4068      65461      1048950       16778791
2  48  1652   52368    1677940     53686584     1717985404
2 172 10962  699288   44738782   2863291620   183251786538
4 588 74998 9587880 1227132434 157072960476 20105353937606
		

Crossrefs

Cf. A175390 (1st column).
Cf. A002249 or A077021 (sequences related to alpha).

Programs

  • PARI
    f(n) = 2 * real(((-1 + quadgen(-28)) / 2)^n);
    a(n, r) = {my(k = valuation(n, 2), m = n/2^k, q = 2^r); sumdiv(m, d, moebius(m/d)*(q^(2^k*d)+1-f(r*2^k*d)))/(4*n);}

Formula

T(n, k) = Sum_{d|n} moebius(m/d)*q^(2^k*d) + 1 - alpha^(r*2^k*d) - alphabar^(r*2^k*d), where n = 2^k*m, m odd, alpha = (-1+sqrt(-7))/2 and alphabar = (-1-sqrt(-7))/2 is the conjugate of alpha.
Previous Showing 11-14 of 14 results.