A326655 Numbers k such that 3*4^k+1 is prime.
1, 3, 4, 6, 9, 15, 18, 33, 138, 204, 219, 267, 1104, 1408, 1584, 1956, 17175, 21147, 24075, 27396, 27591, 40095, 354984, 400989, 916248, 1145805, 2541153, 5414673
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table starts 1 2 4 8 16 32 64 128 ... A000079 1 2 5 6 8 12 18 30 ... A002253 1 3 7 13 15 25 39 55 ... A002254 2 4 6 14 20 26 50 52 ... A032353 1 2 3 6 7 11 14 17 ... A002256 1 3 5 7 19 21 43 81 ... A002261 2 8 10 20 28 82 188 308 ... A032356 1 2 4 9 10 12 27 37 ... A002258 ... (2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v; lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023
12 is a term, because 8191 * 2^12 + 1 = 8191 * 4096 + 1 = 33550337 is prime. (also a term of A061644).
is(k) = isprime(8191 * 2^k + 1);
3 is a term because 12*2^3+1 = 97 (prime).
[p: p in PrimesUpTo (3500) | IsPrime(12*2^p+1)];
Select[Prime[Range[3500]],PrimeQ[12 2^#+1]&]
Comments