cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A326655 Numbers k such that 3*4^k+1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 9, 15, 18, 33, 138, 204, 219, 267, 1104, 1408, 1584, 1956, 17175, 21147, 24075, 27396, 27591, 40095, 354984, 400989, 916248, 1145805, 2541153, 5414673
Offset: 1

Views

Author

Richard N. Smith, Jul 16 2019

Keywords

Comments

One half of the even terms in A002253.

Crossrefs

Numbers k such that r*(r+1)^k+1 is prime: A003306 (r=2), this sequence (r=3), A204322 (r=4), A247260 (r=5), A245241 (r=6), A269544 (r=7), A056799 (r=8), A056797 (r=9), A057462 (r=10), A251259 (r=11).

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Views

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023

A377248 Numbers k such that 8191 * 2^k + 1 is prime.

Original entry on oeis.org

12, 20, 412, 712, 2092, 4704, 10176, 33396, 41124, 105604, 139780, 142924
Offset: 1

Views

Author

Arsen Vardanyan, Oct 21 2024

Keywords

Comments

8191 is the 5th Mersenne prime: 8191 = 2^13 - 1 (a term of A000668).

Examples

			12 is a term, because 8191 * 2^12 + 1 = 8191 * 4096 + 1 = 33550337 is prime. (also a term of A061644).
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(8191 * 2^k + 1);

Extensions

a(8)-a(9) from Hugo Pfoertner, Oct 21 2024
a(10)-a(12) from Michael S. Branicky, Nov 05 2024

A383914 Primes p such that 12*2^p + 1 is also prime.

Original entry on oeis.org

3, 199, 3187, 44683, 59971, 213319, 303091, 916771
Offset: 1

Views

Author

Vincenzo Librandi, May 17 2025

Keywords

Comments

If k is a term in A002253 and k-2 is prime, then k-2 is a term. - Amiram Eldar, May 17 2025

Examples

			3 is a term because 12*2^3+1 = 97 (prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (3500) | IsPrime(12*2^p+1)];
  • Mathematica
    Select[Prime[Range[3500]],PrimeQ[12 2^#+1]&]

Extensions

a(4)-a(8) from the b-file at A002253 added by Amiram Eldar, May 17 2025
Previous Showing 21-24 of 24 results.