A346767
a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 1, 7, 70, 855, 11907, 182714, 3029040, 53565875, 1001599339, 19674910572, 404009742858, 8638256718929, 191702754433132, 4403979321915615, 104496256532120370, 2555972287817569101, 64340126437548435175, 1664318438781195696512, 44182488823505663971205
Offset: 0
-
Table[Sum[StirlingS2[n, k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Sum[(Binomial[6 k, k]/(5 k + 1)) x^k/Product[1 - j x, {j, 0, k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 19; CoefficientList[Series[HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6}, {2/5, 3/5, 4/5, 1, 6/5}, 46656 (Exp[x] - 1)/3125], {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = sum(k=0, n, stirling(n, k, 2)*binomial(6*k, k)/(5*k + 1)); \\ Michel Marcus, Aug 02 2021
A349301
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^5)).
Original entry on oeis.org
1, 0, 1, 5, 31, 200, 1351, 9430, 67531, 493505, 3665981, 27602081, 210179437, 1615820402, 12524590873, 97775503808, 768083233899, 6067097140799, 48159634951855, 383965003803985, 3073379977522321, 24688458872260007, 198968304164411309
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 22}]
A364866
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^5).
Original entry on oeis.org
1, 1, 4, 21, 124, 781, 5120, 34474, 236492, 1644222, 11543644, 81623504, 580104672, 4137414963, 29574658416, 211639869236, 1514729242092, 10832683182538, 77342204972120, 550791674067623, 3908735530965604, 27612614422978557, 193943797650498016
Offset: 0
-
a(n) = sum(k=0, n, (-1)^k*2^(n-k)*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1));
A365185
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)).
Original entry on oeis.org
1, 1, 6, 46, 411, 3996, 41062, 438662, 4823133, 54221518, 620404859, 7201317005, 84590041441, 1003656037278, 12010861830069, 144804336388912, 1757106190680819, 21443109365898743, 263009775111233392, 3240530659303505547, 40088688455992604594
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(k, n-k)/(n+4*k+1));
A365187
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^3).
Original entry on oeis.org
1, 1, 6, 48, 446, 4511, 48218, 535800, 6127598, 71648868, 852668952, 10293847592, 125759270354, 1551872951050, 19314892116764, 242182938963024, 3056337851481678, 38790948190319404, 494825459824571528, 6340628082364678016, 81577931200018721464
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(k, n-k)/(3*n+2*k+1));
A365188
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^4).
Original entry on oeis.org
1, 1, 6, 49, 465, 4807, 52533, 596936, 6981798, 83497115, 1016367737, 12550853210, 156845913315, 1979870172453, 25207383853375, 323325558146400, 4174108907656633, 54195445136831670, 707225283913589280, 9270735916525207605, 122020617365557674605
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+k+1, k)*binomial(k, n-k)/(4*n+k+1));
A386368
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).
Original entry on oeis.org
0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0
(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
-
A386368 := proc(n::integer)
add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
end proc:
seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
-
my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))
A110448
G.f.: A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), where A056045(n) = Sum_{d|n} binomial(n,d).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 18, 23, 49, 73, 145, 194, 474, 611, 1331, 2027, 4393, 5919, 14736, 19415, 46487, 68504, 156618, 212055, 560380, 739165, 1833012, 2657837, 6513367, 8743208, 23649777, 31140300, 81276046, 114962333, 293600318, 391926154
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 18*x^6 +...
where A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), or
A(x) = exp(x + 3/2*x^2 + 4/3*x^3 + 11/4*x^4 + 6/5*x^5 +...).
The g.f. can also be expressed as the product:
A(x) = 1/(1-x)*G000108(x^2)*G001764(x^3)*G002293(x^4)*G002294(x^5)*...
where the functions are g.f.s of well-known sequences:
G000108(x) = 1 + x*G000108(x)^2 = g.f. of A000108 ;
G001764(x) = 1 + x*G001764(x)^3 = g.f. of A001764 ;
G002293(x) = 1 + x*G002293(x)^4 = g.f. of A002293 ;
G002294(x) = 1 + x*G002294(x)^5 = g.f. of A002294 ; etc.
-
{a(n)=polcoeff(exp(x*Ser(vector(n,m, sumdiv(m,d,binomial(m,d))/m))+x*O(x^n)),n)}
-
{a(n)=polcoeff(prod(m=1,n,1/x*serreverse(x/(1+x^m +x*O(x^n)))),n)}
A346580
a(n) = (1/(6*n)) * Sum_{d|n} mu(n/d) * binomial(6*d,d).
Original entry on oeis.org
1, 5, 45, 440, 4750, 54081, 642341, 7861216, 98480286, 1256564750, 16273981757, 213378921432, 2826867619108, 37782552518473, 508840821825750, 6898459208449920, 94070535317459017, 1289430373107917718, 17755914760643605781, 245518560759177014000, 3407586451859019939012
Offset: 1
-
Table[(1/(6 n)) Sum[MoebiusMu[n/d] Binomial[6 d, d], {d, Divisors[n]}], {n, 21}]
-
a(n) = sumdiv(n, d, moebius(n/d)*binomial(6*d,d))/(6*n); \\ Michel Marcus, Jul 24 2021
A346682
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 0, 6, 45, 461, 5020, 57812, 691586, 8512048, 107095262, 1371219004, 17808830924, 234048288772, 3106795261083, 41593689788637, 560980967638479, 7614970691479315, 103957059568762775, 1426355910771621805, 19658792867492660060, 272046427837226505466
Offset: 0
-
Table[Sum[(-1)^(n - k) Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^5 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*k, k)/(5*k + 1)); \\ Michel Marcus, Jul 29 2021
Comments