cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 130 results. Next

A145297 Smallest k such that k^2+1 is divisible by A002144(n)^4.

Original entry on oeis.org

182, 239, 27493, 34522, 800982, 1251967, 623098, 6304056, 6459524, 20099637, 22709274, 35764191, 40317977, 54397650, 166206108, 187800003, 165728858, 152475014, 282599844, 312923750, 154613663, 485200742, 912190662, 548850444
Offset: 1

Views

Author

Klaus Brockhaus, Oct 11 2008

Keywords

Examples

			a(1) = 182 since A002144(1) = 5, 182^2+1 = 33125 = 5^4*53 and for no k < 182 does 5^4 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145298, A145299.

Programs

  • PARI
    {e=4; forprime(p=2, 250, if(p%4==1, q=p^e; m=q; while(!ispower(m-1,2,&n), m=m+q); print1(n, ",")))}
    
  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A145297_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**4))
    A145297_list = list(islice(A145297_gen(),20)) # Chai Wah Wu, May 04 2024

A145298 Smallest k such that k^2+1 is divisible by A002144(n)^5.

Original entry on oeis.org

1068, 143044, 390112, 7745569, 6423465, 46464143, 23048345, 144762466, 404034898, 2153335831, 331407850, 1108900220, 2581164875, 760839155, 10734466938, 6595297216, 773302059, 61063137802, 31915893786, 112699451831
Offset: 1

Views

Author

Klaus Brockhaus, Oct 14 2008

Keywords

Examples

			a(4) = 7745569 since A002144(4) = 29, 7745569^2+1 = 59993839133762 = 2*29^5*97*15077 and for no k < 7745569 does 29^5 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145299.

Programs

  • PARI
    {e=5; forprime(p=2, 200, if(p%4==1, q=p^e; m=q; while(!ispower(m-1,2,&n), m=m+q); print1(n, ",")))}
    
  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A145298_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**5))
    A145298_list = list(islice(A145298_gen(),20)) # Chai Wah Wu, May 04 2024

A248531 Numbers n such that the smallest prime divisor of n^2+1 is 41.

Original entry on oeis.org

50, 114, 196, 214, 296, 624, 706, 770, 870, 934, 1034, 1180, 1280, 1426, 1444, 1590, 1690, 1754, 1836, 1936, 2000, 2164, 2246, 2264, 2346, 2574, 2674, 2756, 2820, 2984, 3066, 3084, 3230, 3330, 3394, 3494, 3576, 3640, 3740, 3886, 3904, 4214, 4296, 4460, 4624
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of n^2+1 is A002313(7).
a(n)== 32 or 50 (mod 82).

Examples

			50 is in the sequence because 50^2+1= 41*61.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..5000] | PrimeDivisors(n^2+1)[1] eq 41]; // Bruno Berselli, Oct 08 2014
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1, 1]]==41, AppendTo[lst, n]], {n, 2, 2000}]; lst
    Select[Range[5000],FactorInteger[#^2+1][[1,1]]==41&] (* Harvey P. Dale, Aug 15 2017 *)
    p = 41; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[5000], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)

A057129 -4 is a square mod n.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 50, 52, 53, 58, 61, 65, 68, 73, 74, 82, 85, 89, 97, 100, 101, 104, 106, 109, 113, 116, 122, 125, 130, 136, 137, 145, 146, 148, 149, 157, 164, 169, 170, 173, 178, 181, 185, 193, 194, 197, 200, 202, 205, 212
Offset: 1

Views

Author

Henry Bottomley, Aug 10 2000

Keywords

Comments

Numbers that are not multiples of 16 and for which all odd prime factors are congruent to 1 mod 4. - Eric M. Schmidt, Apr 21 2013

Crossrefs

Includes the primes in A002313 and these (primes congruent to {1, 2} mod 4) are the prime factors of the terms in this sequence. Cf. A008784, A057125, A057126, A057127, A057128.

Programs

  • Mathematica
    Select[Range[100], IntegerQ[PowerMod[-4, 1/2, #]] &] // Quiet (* After Jean-François Alcover *) (* Robert Price, Apr 19 2025 *)
  • Sage
    def A057129(n) :
        if n%16==0: return False
        for (p, m) in factor(n) :
            if p % 4 not in [1, 2] : return False
        return True
    # Eric M. Schmidt, Apr 21 2013

A201278 a(n) specifies the quadratic extension sqrt(a(n)) for A201047(n).

Original entry on oeis.org

10, 2, 2, 5, 5, 130, 185, 5, 2, 2, 10, 10, 5, 5, 10, 17, 17, 5, 5, 5, 53, 53, 13, 13, 1490, 5, 2, 2, 5, 1565, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 29 2011

Keywords

Comments

Conjecture (Jasiński): The numbers in this sequence are multiplicative combinations of: primes congruent to 1 or 2 modulo 4 (A002313), Pythagorean primes (A002144), the number 2, and norms of Gaussian primes A055025.

Crossrefs

Extensions

Minor edits by N. J. A. Sloane, Feb 23 2014

A079887 Values of y-x where p runs through the primes of form 4k+1 and p=x^2+y^2, 0<=x<=y.

Original entry on oeis.org

1, 1, 3, 3, 5, 1, 5, 1, 5, 3, 5, 9, 7, 1, 7, 3, 5, 11, 1, 5, 13, 13, 5, 11, 15, 3, 5, 11, 15, 1, 3, 7, 13, 9, 11, 7, 13, 19, 17, 1, 5, 13, 17, 9, 17, 9, 11, 5, 7, 23, 15, 19, 1, 3, 21, 9, 19, 11, 25, 21, 7, 25, 17, 1, 13, 5, 15, 23, 11, 17, 5, 25, 23, 9, 3, 5, 19, 15, 27, 25, 13, 1, 19, 29, 27
Offset: 1

Views

Author

Benoit Cloitre, Jan 13 2003

Keywords

Comments

Also values of x where p runs through the primes of form 4k+1 and 2*p=x^2+y^2, 0<=xColin Barker, Jul 07 2014

Crossrefs

Programs

  • Mathematica
    pp = Select[ Range[200] // Prime, Mod[#, 4] == 1 &]; f[p_] := y - x /. ToRules[ Reduce[0 <= x <= y && p == x^2 + y^2, {x, y}, Integers]]; A079887 = f /@ pp (* Jean-François Alcover, Jan 15 2015 *)

Formula

a(n) = A002330(n+1)-A002331(n+1). - R. J. Mathar, Jan 09 2017

A112634 Mersenne prime indices that are not Gaussian primes.

Original entry on oeis.org

2, 5, 13, 17, 61, 89, 521, 2281, 3217, 4253, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 132049, 859433, 1398269, 2976221, 3021377, 6972593, 13466917, 30402457, 32582657, 42643801, 43112609, 57885161
Offset: 1

Views

Author

Jorge Coveiro, Dec 27 2005

Keywords

Comments

57885161, 74207281 and 77232917 are in this sequence as well. - Ivan Panchenko, Apr 13 2018
82589933 is in the sequence as well. - David Benjamin, Mar 30 2022
136279841 is in the sequence. - David Benjamin, Nov 11 2024
Other than the term 2, primes p (A000043) such that 2^p - 1 is prime (A000668) and congruent to 31 mod 120. - Jianing Song, Nov 18 2024

Crossrefs

Programs

  • Mathematica
    Select[MersennePrimeExponent[Range[48]], Mod[#, 4] != 3 &] (* Amiram Eldar, Oct 18 2024 *)
  • PARI
    is(n)=n%4 < 3 && isprime(n) && isprime(2^n-1) \\ Charles R Greathouse IV, Nov 28 2016

Formula

A000043 INTERSECT A002313. - R. J. Mathar, Oct 06 2008
A000043 SET-MINUS A112633.

Extensions

Edited by R. J. Mathar, Oct 06 2008
a(26)-a(28) from Ivan Panchenko, Apr 13 2018
a(29) from Amiram Eldar, Oct 18 2024

A137351 Composite numbers n such that x^2 - n*y^2 represents -1.

Original entry on oeis.org

10, 26, 50, 58, 65, 74, 82, 85, 106, 122, 125, 130, 145, 170, 185, 202, 218, 226, 250, 265, 274, 290, 298, 314, 325, 338, 346, 362, 365, 370, 394, 425, 442, 445, 458, 481, 485, 493, 530, 533, 538, 554, 565, 586, 610, 626, 629, 634, 685, 697, 698, 730, 746
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2008

Keywords

Comments

Number of terms less than or equal to 10^k for k=0 .. : 0, 1, 8, 71, 712, 6702, 63485, 602870, ... . - Robert G. Wilson v, Jul 20 2008

Examples

			3^2 - 10*1^2 = -1, so 10 is a member.
4005^2 - 106*389^2 = -1, so 106 is a member.
		

Crossrefs

For the primes with this property see A002313. A134406 is a subset.

Programs

  • Mathematica
    lst = {}; Do[ If[ !PrimeQ@ n && FindInstance[x^2 - n*y^2 == -1, {x, y}, Integers] != {}, AppendTo[lst, n]], {n, 2, 1000}]

Extensions

More terms from Robert G. Wilson v, Jul 20 2008

A248528 Numbers n such that the smallest prime divisor of n^2+1 is 17.

Original entry on oeis.org

4, 30, 64, 106, 140, 166, 234, 276, 310, 336, 344, 370, 404, 446, 480, 506, 514, 540, 574, 650, 676, 744, 786, 820, 846, 854, 880, 914, 956, 990, 1016, 1024, 1050, 1160, 1186, 1194, 1220, 1254, 1296, 1330, 1356, 1364, 1390, 1424, 1466, 1534, 1560, 1636, 1670
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of n^2+1 is A002313(4).
a(n)== 4 or 30 (mod 34).

Examples

			30 is in the sequence because 30^2+1= 17*53.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] | PrimeDivisors(n^2+1)[1] eq 17]; // Bruno Berselli, Oct 08 2014
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1, 1]]==17, AppendTo[lst, n]], {n, 2, 2000}]; lst
    p = 17; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[1670], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)

A248549 Numbers n such that the smallest prime divisor of n^2+1 is 61.

Original entry on oeis.org

194, 316, 416, 804, 904, 926, 1026, 1170, 1270, 1414, 1536, 1780, 2024, 2490, 2734, 2856, 3000, 3100, 3244, 3344, 3366, 3610, 3954, 3976, 4320, 4564, 4830, 4930, 5074, 5196, 5540, 5684, 6394, 6416, 6516, 6760, 6904, 7004, 7126, 7270, 7370, 7514, 7614, 7736
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of n^2+1 is A002313(9).
a(n)== 50 or 72 (mod 122).

Examples

			194 is in the sequence because 194^2+1= 61*617.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1, 1]]==61, AppendTo[lst, n]], {n, 2, 10000}]; lst
    p = 61; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[8000], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)
Previous Showing 51-60 of 130 results. Next