cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A155107 Numbers that are 23 or 30 (mod 53).

Original entry on oeis.org

23, 30, 76, 83, 129, 136, 182, 189, 235, 242, 288, 295, 341, 348, 394, 401, 447, 454, 500, 507, 553, 560, 606, 613, 659, 666, 712, 719, 765, 772, 818, 825, 871, 878, 924, 931, 977, 984, 1030, 1037, 1083, 1090, 1136, 1143, 1189, 1196, 1242, 1249, 1295
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Also, numbers k such that k^2 == -1 (mod 53).
The first pair (a,b) is such that a+b=p=53, a*b=p*h+1, with h<=(p-1)/4; subsequent pairs are given as (a+kp, b+kp), k=1,2,3...

Crossrefs

Cf. numbers n such that n^2 == -1 (mod p), where p is a prime of the form 4k+1: A047221 (p=5), A155086 (p=13), A155095 (p=17), A155096 (p=29), A155097 (p=37), A155098 (p=41), this sequence (p=53), A241406 (p=61), A241407 (p=73), A241520 (p=89), A241521 (p=97).

Programs

  • Magma
    I:=[23,30,76]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
    
  • Magma
    [-23*(-1)^n+53*Floor(n/2): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
  • Mathematica
    Select[Range[1300], PowerMod[#, 2, 53] == 52 &] (* or *) LinearRecurrence[ {1, 1, -1}, {23, 30, 76}, 50] (* Harvey P. Dale, Nov 30 2011 *)
    CoefficientList[Series[(23 + 7 x + 23 x^2)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 24 2014 *)
  • PARI
    A155107(n)=n\2*53-23*(-1)^n /* M. F. Hasler, Jun 16 2010 */
    

Formula

a(n) = 23*(-1)^(n+1) + 53*floor(n/2). - M. F. Hasler, Jun 16 2010
a(2k+1) = 53 k + a(1), a(2k) = 53 k - a(1), with a(1) = 23 = A002314(7) since 53 = A002144(7). - M. F. Hasler, Jun 16 2010
a(n) = a(n-2) + 53 for all n > 2. - M. F. Hasler, Jun 16 2010
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 53*n/2 - 53/4 - 39*(-1)^n/4.
G.f.: x*(23 + 7*x + 23*x^2)/((1+x)*(1-x)^2). (End)

Extensions

Terms checked & minor edits by M. F. Hasler, Jun 16 2010

A177979 Smallest number k such that A002313(n) divides k^2+1.

Original entry on oeis.org

1, 2, 5, 4, 12, 6, 9, 23, 11, 27, 34, 22, 10, 33, 15, 37, 44, 28, 80, 19, 81, 14, 107, 89, 64, 16, 82, 60, 53, 138, 25, 114, 148, 136, 42, 104, 115, 63, 20, 143, 29, 179, 67, 109, 48, 208, 235, 52, 118, 86, 24, 77, 125, 35, 194, 154, 149, 106, 58, 26, 135, 96, 353, 87, 39
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 16 2010

Keywords

Comments

1 followed by A002314. [From R. J. Mathar, May 29 2010]

Examples

			1^2+1 = 2 which is divided by A002313(1) which adds 1 to the sequence.
2^2+1 = 5 is divided by A002313(2) which adds 2 to the sequence.
27^2+1 = 730 is divided by A002313(10) which adds 27 to the sequence.
		

References

  • Friedhelm Padberg: Elementare Zahlentheorie. Spektrum Akademischer Verlag, Berlin Heidelberg, 1996

Extensions

Disentangled variables in the definition - R. J. Mathar, Jun 07 2010

A209877 a(n) = A209874(n)/2: Least m > 0 such that 4*m^2 = -1 modulo the Pythagorean prime A002144(n).

Original entry on oeis.org

1, 4, 2, 6, 3, 16, 15, 25, 23, 17, 11, 5, 38, 49, 50, 22, 14, 40, 81, 56, 7, 61, 72, 32, 8, 41, 30, 114, 69, 144, 57, 74, 68, 21, 52, 137, 167, 10, 133, 196, 127, 191, 174, 24, 104, 143, 26, 59, 43, 12, 258, 238, 289, 97, 77, 252, 53, 29, 13, 283, 48, 190, 335, 361, 31, 228, 291, 159, 263, 123, 260, 325, 363, 247, 162
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2012

Keywords

Comments

Also: Square root of -1/4 in Z/pZ, for Pythagorean primes p=A002144(n).
Also: Least m>0 such that the Pythagorean prime p=A002144(n) divides 4(kp +/- m)^2+1 for all k>=0.
In practice these can also be determined by searching the least N^2+1 whose least prime factor is p=A002144(n): For given p, all of these N will have a(n) or p-a(n) as remainder mod 2p.

Examples

			a(1)=1 since A002144(1)=5 and 4*1^2+1 is divisible by 5; as a consequence 4*(5k+/-1)^2+1 = 100k^2 +/- 40k + 5 is divisible by 5 for all k.
a(2)=4 since A002144(2)=13 and 4*4^2+1 = 65 is divisible by 13, while 4*1^1+1=5, 4*2^2+1=17 and 4*3^2+1=37 are not. As a consequence, 4*(13k+/-4)^2+1 = 13(...)+4*4^1+1 is divisible by 13 for all k.
		

Crossrefs

Programs

  • Maple
    f:= proc(p) local m;
       if not isprime(p) then return NULL fi;
       m:= numtheory:-msqrt(-1/4, p);
       min(m,p-m);
    end proc:
    map(f, [seq(i,i=5..1000,4)]); # Robert Israel, Mar 13 2018
  • Mathematica
    f[p_] := Module[{r}, r /. Solve[4 r^2 == -1, r, Modulus -> p] // Min];
    f /@ Select[4 Range[300] + 1, PrimeQ] (* Jean-François Alcover, Jul 27 2020 *)
  • PARI
    apply(p->lift(sqrt(Mod(-1,p)/4)), A002144)

A223705 Least number k such that prime(n) is the largest divisor of k^2 + 1, or 0 if there is no such k.

Original entry on oeis.org

1, 0, 2, 0, 0, 5, 4, 0, 0, 12, 0, 6, 9, 0, 0, 23, 0, 11, 0, 0, 27, 0, 0, 34, 22, 10, 0, 0, 33, 15, 0, 0, 37, 0, 44, 0, 28, 0, 0, 80, 0, 19, 0, 81, 14, 0, 0, 0, 0, 107, 89, 0, 64, 0, 16, 0, 82, 0, 60, 53, 0, 138, 0, 0, 25, 114, 0, 148, 0, 136, 42, 0, 0, 104, 0, 0
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that a(n) = 0 for prime(n) = 3 (mod 4). If the zeros are removed, A002314 (with 1 prepended) and A177979 are produced.

Crossrefs

Cf. A223701-A223707 (related sequences).

Programs

  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[If[Mod[Prime[n], 4] == 3, t[[n]] = -1], {n, nn}]; n = 0; While[Times @@ t == 0, n++; s = FactorInteger[n^2 + 1][[-1, 1]]; p = PrimePi[s]; If[p <= nn && t[[p]] == 0, t[[p]] = n]]; Do[If[Mod[Prime[n], 4] == 3, t[[n]] = 0], {n, nn}]; t

A047818 a(n) is the least number m such that A002313(n)*m - 1 is a square.

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 2, 10, 2, 10, 13, 5, 1, 10, 2, 10, 13, 5, 37, 2, 34, 1, 50, 34, 17, 1, 25, 13, 10, 65, 2, 41, 65, 53, 5, 29, 34, 10, 1, 50, 2, 74, 10, 26, 5, 85, 106, 5, 25, 13, 1, 10, 26, 2, 61, 37, 34, 17, 5, 1, 26, 13, 170, 10, 2, 5, 130, 58, 125, 106, 73, 130, 50, 26, 170
Offset: 1

Views

Author

Keywords

Comments

A002313 has the 4k+1 and 4k+2 primes.
Related to Stormer numbers.

Examples

			a(3) = 2 because A002313(3)=13 and 13*2-1 = 5^2.
		

Crossrefs

Formula

a(n) = ((A002314(n-1))^2 + 1) / A002313(n).

Extensions

Edited by Don Reble, Apr 13 2006

A180342 a(n) = the smallest number k such that the smallest prime factor of k^2 + 1 equals A002144(n).

Original entry on oeis.org

2, 34, 4, 46, 6, 50, 76, 194, 100, 144, 366, 10, 730, 324, 374, 254, 286, 266, 886, 274, 14, 794, 610, 546, 16, 456, 494, 334, 724, 964, 520, 526, 834, 664, 1596, 504, 3510, 20, 2720, 1234, 1120, 516, 566, 874, 810, 756, 1134, 2110, 1224, 24, 670, 726
Offset: 1

Views

Author

Michel Lagneau, Jan 18 2011

Keywords

Comments

The sequence giving the smallest number k such that the greatest prime factor of k^2 + 1 equals A002144(n) is A002314.

Examples

			a(1) = 2 because 2^2 + 1 = 5 = A002144(1) ;
a(2) = 34 because 34^2 + 1= 13*89 = A002144(2) * 89 ;
a(3) = 4 because 4^2 + 1 = 17 = A002144(3) ;
a(4) = 46 because 46^2 + 1 = 29*73 = A002144(4) * 73.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..200):k:=1:for p from 1 to 1000 do: if type(p,prime)=true
      and irem(p,4)=1 then T[k]:=p:k:=k+1:else fi:od:for q from 1 to k do:z:=T[q]:ind:=0:for n from 1 to 10000 while(ind=0) do: x:=n^2+1:y:=factorset(x):if z=y[1] then ind:=1:printf(`%d, `,n):else fi:od: od:

A197062 Successive records in A152676.

Original entry on oeis.org

3, 8, 13, 17, 31, 32, 50, 55, 75, 91, 98, 100, 105, 129, 162, 183, 241, 288, 311, 334, 381, 392, 413, 489, 553, 578, 615, 651, 670, 722, 726, 741, 844, 968, 1013, 1152, 1164, 1261, 1264, 1461, 1561, 1601, 1682, 1800, 1809, 1905, 1979, 2048, 2225, 2312, 2450
Offset: 1

Views

Author

Artur Jasinski, Oct 09 2011

Keywords

Comments

On plot picture of A152676 is easy to see that all points occurred between some upper and lower limit curve. Numbers in this sequence are the nearest upper limit curve.

Crossrefs

Programs

  • Mathematica
    aa = {}; max = 0; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[! Mod[k^2 + 1, Prime[n]] == 0, k++]; If[Prime[n] - k > max, max = Prime[n] - k; AppendTo[aa, Prime[n] - k]]], {n, 1, 1000}]; aa
Previous Showing 11-17 of 17 results.