cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 84 results. Next

A074469 Least m such that Sigma-Composite-Harmonic series Sum_{k=1..m} 1/A000203(A002808(k)) >= n.

Original entry on oeis.org

32, 301, 2123, 13172, 76105, 420007, 2245009, 11719362, 60071831, 303487314, 1515211979
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(m,s=0.);for(c=4,(2*n+2)^(n+2),if(isprime(c),next,m++);s+=1/sigma(c);if(s>=n,return(m))) \\ Charles R Greathouse IV, Feb 19 2013

Extensions

a(6)-a(11) from Donovan Johnson, Aug 22 2011

A074470 Least m such that Phi-Composite-Harmonic series Sum_{k=1..m} 1/A000010(A002808(k)) >= n.

Original entry on oeis.org

2, 7, 16, 31, 60, 113, 205, 371, 663, 1176, 2069, 3631, 6341, 11039, 19159, 33164, 57287, 98763, 169967, 292061, 501165, 858892, 1470334, 2514423, 4295912, 7333264, 12508213, 21319360, 36312685, 61811287, 105152840, 178787270, 303829041, 516074615, 876190239
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/EulerPhi[c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Extensions

More terms from Lambert Klasen (lambert.klasen(AT)gmx.net), Jul 23 2005
a(30)-a(35) from Donovan Johnson, Aug 21 2011

A082912 Least k such that H(k) > 10^n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.

Original entry on oeis.org

2, 12367, 15092688622113788323693563264538101449859497
Offset: 0

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

"In 1968 John W. Wrench Jr calculated the exact minimum number of terms needed for the series to sum past 100; that number is 15 092 688 622 113 788 323 693 563 264 538 101 449 859 497. Certainly, he did not add up the terms.
"Imagine a computer doing so and suppose that it takes it 10^-9 seconds to add each new term to the sum and that we set it adding and let it continue doing so indefinitely. The job will have been completed in not less than 3.5 * 10^17 (American) billion years." Havil.

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 23.

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[Exp[n - EulerGamma] - 1/2] + 1; Table[ f[10^n], {n, 0, 2}]

Formula

H(k) ~= log(k) + Euler's Gamma Constant (A001620) + 1/(2k).
a(n) = A002387(10^n). - Joerg Arndt, Jul 13 2015

A082913 Least k such that H(k) > 2^n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.

Original entry on oeis.org

2, 4, 31, 1674, 4989191, 44334502845080, 3500783582875029181027036603, 21827907538883637012326748457700300661358717434156476363
Offset: 0

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 23.
  • Murray Schechter, Summation of divergent series by computer, Amer. Math. Monthly, 91:10 (1984), 629-632. See Table 1.

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[Exp[n - EulerGamma] - 1/2] + 1; Table[ f[ 2^n], {n, 0, 7}]

Formula

H(k) ~= log(k) + Euler's Gamma Constant (A001620) + 1/(2k).
a(n) = A002387(2^n). - Joerg Arndt, Jul 13 2015

A087460 Least n such that H(n) is closer to an integer than any H(j) with j < n; where H(n) is the harmonic number sum_{i=0..n} 1/i.

Original entry on oeis.org

2, 3, 4, 10, 11, 30, 83, 226, 4549, 91379, 91380, 248396, 248397, 675213, 4989190, 4989191, 13562026, 13562027, 36865412, 100210580, 2012783315, 5471312310, 40427833595, 40427833596, 109894245428, 812014744421, 812014744422, 2207284924202, 2207284924203
Offset: 2

Views

Author

Robert G. Wilson v, Sep 03 2003

Keywords

Comments

H(36865412) = 18.000000003719931082993704481490195538573320586002
The inequality, 0.5*log(n^2+n)+gamma < H(n) < 0.5*log(n^2+n)+gamma +1/(6*n^2+6*n) (see Villarino link), where gamma is the Euler-Mascheroni constant, can be used to determine terms of this sequence without directly computing the harmonic numbers. - Steven J. Kifowit, May 26 2015

Crossrefs

Programs

  • Mathematica
    d = 1; s = 1; n = 2; Do[ While[s = N[s + 1/n, 50]; Abs[Round[s] - s] > d, n++ ]; Print[n]; d = Abs[Round[s] - s]; n++, {i, 2, 18}]

Extensions

Corrected and extended by Steven J. Kifowit, May 26 2015

A096143 a(n) = ceiling(Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

W. Neville Holmes, Jul 24 2004

Keywords

Examples

			a(4)=3 because the ceiling of 1 + 1/2 + 1/3 + 1/4 is 3.
		

Crossrefs

Programs

  • Mathematica
    Ceiling[HarmonicNumber[Range[110]]] (* Harvey P. Dale, Aug 27 2014 *)
  • PARI
    a(n) = ceil(sum(i=1, n, 1/i)) \\ Michel Marcus, Jul 11 2013

Formula

a(n) = ceiling(A001008(n)/A002805(n)). - Michel Marcus, Jul 11 2013

A214966 Array T(m,n) = greatest k such that 1/n + ... + 1/(n+k-1) <= m, by rising antidiagonals.

Original entry on oeis.org

1, 3, 2, 10, 9, 4, 30, 29, 16, 6, 82, 81, 48, 22, 7, 226, 225, 134, 67, 28, 9, 615, 614, 370, 188, 86, 35, 11, 1673, 1672, 1012, 517, 241, 105, 41, 12, 4549, 4548, 2756, 1413, 664, 295, 124, 47, 14, 12366, 12365, 7498, 3847, 1814, 811, 348, 143, 54
Offset: 1

Views

Author

Clark Kimberling, Sep 01 2012

Keywords

Comments

Row 1: A136617.
Column 1: A115515 = -1 + A002387.

Examples

			Northwest corner (the array is read by northeast antidiagonals):
    1     2     4     6     7     9
    3     9    16    22    28    35
   10    29    48    67    86   105
   30    81   134   188   241   295
   82   225   370   517   664   811
  226   614  1012  1413  1814  2216
		

Crossrefs

Programs

  • Mathematica
    t = Table[1 + Floor[x /. FindRoot[HarmonicNumber[N[x + z, 150]] - HarmonicNumber[N[z - 1, 150]] == m, {x, Floor[-E^bm/2 + (-1 + E^m) z]}, WorkingPrecision -> 100]], {m, 1, #}, {z, 1, #}] &[12]
    TableForm[t]
    u = Flatten[Table[t[[i - j]][[j]], {i, 2, 12}, {j, 1, i - 1}]]
    (* Peter J. C. Moses, Aug 29 2012 *)

A226187 Least positive integer k such that 1 + 1/2 + ... + 1/k > n/3.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 22, 31, 43, 60, 83, 116, 162, 227, 316, 441, 616, 859, 1199, 1674, 2336, 3260, 4550, 6349, 8861, 12367, 17259, 24088, 33617, 46916, 65477, 91380, 127531, 177984, 248397, 346666, 483812, 675214, 942336, 1315136, 1835421, 2561536, 3574912, 4989191, 6962977, 9717617
Offset: 1

Views

Author

Clark Kimberling, May 30 2013

Keywords

Comments

Conjecture: a(n+1)/a(n) converges to 1.39...
This constant is probably exp(1/3) = 1.395612425086089528628..., see A004080. - Ralf Stephan, Jun 03 2013

Examples

			a(10) = 16 because 1 + 1/2 + ... + 1/15 < 10/3 < 1 + 1/2 + ... + 1/16.
		

Crossrefs

Programs

  • Mathematica
    z = 32; f[n_] := 1/n; Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += f[#]) >= n/3 &], {n, 1, z}]; m = Map[a, Range[z]]
  • PARI
    a(n)=local(s,k);s=0;k=1;while(s<=n/3,s=s+1/k;k++);k-1

Extensions

More terms from Jean-François Alcover, Jun 05 2013
Deleted obsolete b-file. - N. J. A. Sloane, Jan 04 2019

A258255 Least k such that n <= Sum_{i=1..k} 1/A258252(i), where A258252 are the numbers having lowest possible denominators for the sums of reciprocals.

Original entry on oeis.org

1, 4, 14, 46, 153, 535, 1855, 6449, 22460, 81237
Offset: 1

Views

Author

Ivan Neretin, May 24 2015

Keywords

Comments

Presumably, every natural number is reached at some step exactly, rather than "stepped over" (as is the case with harmonic series).

Examples

			For the first few terms of A258252, the sums of their reciprocal are: 1, 3/2, 5/3, 2, 9/4, 7/3, 12/5, 5/2, 18/7, 13/5, 14/5, 17/6, 20/7, 3, ... that are equal to 1, 2, 3 for n=1, 4, 14. So a(1)=1, a(2)=4, a(3)=14.
		

Crossrefs

Cf. A258252, A004080 (analog for harmonic series), A002387.

A332991 a(n) is the smallest prime power p^k (p prime, k >= 1) such that sum of reciprocals of prime powers up to p^k (prime power harmonic sum) exceeds n.

Original entry on oeis.org

2, 4, 19, 1307, 266655247
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2020

Keywords

Comments

The corresponding indices of a(n) in A246655 are 1, 3, 12, 240, ...

Examples

			a(1) = 4 because 1/2 + 1/3 = 0.8333... < 1 but 1/2 + 1/3 + 1/4 = 1.0833... > 1.
		

Crossrefs

Similar sequences: A002387 (for positive integers), A016088 (for primes), A076751 (for composite numbers), A333004 (for squarefree numbers).
Cf. A246655 (prime powers).

Extensions

a(4) from Daniel Suteu, Mar 05 2020
Previous Showing 51-60 of 84 results. Next