cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-69 of 69 results.

A356581 Decimal expansion of gamma - 3*log(2) + log(3) + 17/24.

Original entry on oeis.org

3, 0, 4, 7, 1, 9, 7, 4, 5, 2, 2, 3, 1, 3, 9, 9, 5, 7, 0, 8, 3, 3, 9, 4, 2, 9, 5, 9, 6, 3, 7, 3, 1, 7, 6, 4, 7, 9, 6, 4, 8, 2, 8, 2, 4, 0, 1, 5, 2, 4, 0, 6, 2, 1, 5, 1, 1, 7, 5, 4, 8, 7, 3, 3, 7, 5, 5, 1, 4, 4, 8, 7, 4, 2, 0, 5, 2, 2, 8, 2, 4, 3, 2, 6, 3, 0, 6, 1, 7, 0, 4, 4, 9, 5, 5, 6, 1, 0, 9, 0, 0, 9, 9, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Aug 13 2022

Keywords

Examples

			0.30471974522313995708339429596373176479648282401524...
		

Crossrefs

Cf. A001620 (gamma), A002162, A002391, A356580.

Programs

  • Mathematica
    RealDigits[EulerGamma - 3*Log[2] + Log[3] + 17/24, 10, 100][[1]]
  • PARI
    Euler - 3*log(2) + log(3) + 17/24

Formula

Equals lim_{n->oo} Sum_{i,j,k=1..n} 1/(i+j+k) - log(n) - 9*(log(2) - log(3)/2)*n + 3*(3*log(3)/2 - 2*log(2))*n^2 (Chen and Srivastava, 2012).

A365522 Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.

Original entry on oeis.org

6, 3, 8, 7, 0, 4, 5, 2, 8, 7, 7, 9, 8, 1, 8, 3, 6, 5, 5, 9, 7, 4, 7, 6, 7, 4, 6, 0, 5, 1, 2, 1, 6, 6, 0, 5, 7, 7, 8, 3, 1, 7, 2, 4, 0, 1, 9, 5, 1, 2, 3, 6, 1, 6, 3, 4, 6, 7, 4, 5, 9, 9, 2, 0, 3, 7, 5, 7, 5, 7, 5, 7, 5, 9, 7, 7, 7, 2, 5, 9, 8, 0, 3, 8, 1, 2, 1, 5, 3, 1, 5, 8, 1, 6, 5, 7, 0, 5, 4, 4, 0, 2, 5, 1, 6, 5, 6, 2, 7, 0, 9, 8, 6, 7, 5
Offset: 0

Views

Author

Claude H. R. Dequatre, Sep 08 2023

Keywords

Comments

This sequence is also the decimal expansion of Sum_{k>=1} 1/(f(k) +g(k)), where f(k) and g(k) are respectively the k-th triangular and the 13-gonal numbers (A000217 and A051865).

Examples

			0.63870452877981836559747674605121660577831724019512...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); (Pi(R)*Sqrt(3)+9*Log(3))/24; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[(Pi*Sqrt[3] + 9*Log[3])/24, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
  • PARI
    (Pi*sqrt(3)+9*log(3))/24
    
  • SageMath
    numerical_approx((pi*sqrt(3)+9*log(3))/24, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Equals Sum_{k>=1} 1/(6*k^2 - 4*k) = A244645/2 [Shamos].
Equals - Integral_{x=0..1} log(1-x^6)/x^5 dx [Shamos].

A145422 Decimal expansion of sum_{n=0..infinity} (-1)^n/(2^(3n)*(3n+1)).

Original entry on oeis.org

9, 7, 0, 8, 0, 3, 8, 8, 4, 3, 0, 0, 7, 7, 5, 8, 4, 7, 3, 2, 9, 7, 7, 4, 4, 9, 8, 1, 8, 8, 2, 2, 7, 1, 4, 5, 6, 4, 3, 8, 5, 2, 2, 6, 8, 6, 3, 8, 4, 9, 6, 6, 7, 5, 7, 6, 8, 1, 9, 3, 0, 8, 9, 6, 7, 5, 2, 0, 5, 8, 2, 4, 7, 8, 1, 6, 5, 4, 2, 8, 3, 5, 1, 9, 2, 4, 6, 9, 1, 4, 3, 4, 1
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.97080388430077584732977...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.17

Programs

  • Maple
    evalf((Pi/sqrt(3)+log(3))/3) ;
  • Mathematica
    RealDigits[Hypergeometric2F1[1/3,1,4/3,-(1/8)],10,120][[1]] (* Harvey P. Dale, May 11 2017 *)

Formula

A157718 Greedy Egyptian fraction expansion of log(3).

Original entry on oeis.org

1, 11, 130, 91827, 42593758221, 2068726045016880942060, 20697114911379630588051784011292634933847536, 832769470129253476302780470023395858447487389073547955500158020204885523374048803963217
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 04 2009

Keywords

Examples

			log(3) = Sum_{n>=0} 1/a(n) = 1/1 + 1/11 + 1/130 + 1/91827 + 1/42593758221 + ...
		

Crossrefs

Programs

  • PARI
    x=log(3); for (k=1, 8, d=ceil(1/x); x=x-1/d; print(d,","))

A293079 Decimal expansion of log_Pi(3).

Original entry on oeis.org

9, 5, 9, 7, 1, 3, 1, 1, 8, 5, 6, 9, 3, 9, 0, 0, 1, 9, 3, 3, 6, 0, 2, 3, 1, 9, 8, 8, 4, 3, 5, 0, 0, 6, 5, 4, 9, 4, 2, 2, 4, 7, 4, 3, 5, 6, 3, 9, 5, 7, 5, 3, 4, 5, 5, 1, 1, 0, 4, 5, 7, 2, 7, 7, 0, 6, 7, 3, 9, 1, 3, 7, 6, 7, 3, 2, 8, 1, 9, 1, 9, 9, 8, 7, 9, 2, 7, 1, 5, 8, 0, 3, 8, 0, 0, 1, 8, 8, 1, 4
Offset: 0

Views

Author

Rajat Goel, Sep 30 2017

Keywords

Examples

			0.959713118569390019336023198...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Pi,3],10,120][[1]] (* Harvey P. Dale, Apr 09 2021 *)
  • PARI
    log(3)/log(Pi) \\ Michel Marcus, Sep 30 2017
  • Python
    from math import log, pi
    print(log(3,pi))
    

Formula

Equals log(3)/log(Pi) = A002391/A053510.

A322758 Decimal expansion of log(8/sqrt(3)).

Original entry on oeis.org

1, 5, 3, 0, 1, 3, 5, 3, 9, 7, 3, 4, 5, 7, 8, 1, 0, 8, 2, 5, 5, 4, 0, 7, 3, 7, 4, 5, 9, 1, 3, 2, 6, 6, 8, 5, 1, 9, 0, 2, 7, 5, 5, 1, 2, 4, 1, 6, 9, 3, 9, 1, 0, 3, 6, 4, 9, 4, 6, 9, 2, 8, 6, 1, 6, 6, 1, 4, 3, 3, 7, 1, 9
Offset: 1

Views

Author

N. J. A. Sloane, Dec 28 2018

Keywords

Comments

Equals 3*A002162 - (1/2)*A002391. - Jianing Song, Dec 29 2018

Examples

			1.530135397345781082554073745913266851902755124169391036494692861661433719...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 557.

Crossrefs

Programs

A323458 Decimal expansion of log(2^(1/2)*3^(1/3) / 6^(1/6)).

Original entry on oeis.org

4, 1, 4, 1, 5, 1, 1, 0, 8, 2, 9, 8, 0, 0, 0, 0, 5, 1, 7, 0, 4, 9, 5, 1, 5, 7, 9, 9, 7, 3, 1, 4, 6, 4, 7, 3, 4, 6, 6, 4, 1, 5, 1, 3, 7, 7, 5, 7, 2, 0, 9, 9, 9, 3, 3, 2, 9, 3, 4, 2, 3, 9, 2, 1, 0, 4, 0, 4, 6, 9, 2, 2, 8, 5, 9, 6, 6, 6, 3, 9, 9, 6, 8, 0, 8, 9, 0, 4, 0, 1, 4, 6, 7, 7, 6, 1, 5, 7, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2019

Keywords

Examples

			0.4141511082980000517049515799731464734664151377572...
		

Crossrefs

Suggested by A230191.

Programs

  • Mathematica
    RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* Georg Fischer, Apr 04 2020 *)
  • PARI
    log( 2^(1/2)*3^(1/3) / 6^(1/6) ) \\ Charles R Greathouse IV, May 15 2019

Formula

From Jianing Song, Jan 23 2019: (Start)
Equals (1/6)*log(12) = (1/6)*A016635.
Equals (1/3)*log(2) + (1/6)*log(3) = (1/3)*A002162 + (1/6)*A002391. (End)
Equals Sum_{k>=1} H(2*k-1)/4^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 30 2021

Extensions

a(99) corrected by Georg Fischer, Apr 04 2020

A373214 Signature sequence of log(3).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 13, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 14, 2, 13, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 15, 3, 14, 2, 13, 1, 12, 11, 10, 9, 8, 7, 6, 5, 16, 4, 15, 3, 14, 2, 13, 1, 12, 11, 10
Offset: 1

Views

Author

R. J. Mathar, May 28 2024

Keywords

Comments

Signature sequence of x = A002391: defined by sorting the values of i+j*x, i,j>=1, and collecting the list of the i in that order.
Starts similar to A004736, because log(3)=1.09861... is close to 1.

Crossrefs

Cf. A002391.

A387247 Decimal expansion of (2*log(3) + 7)/8.

Original entry on oeis.org

1, 1, 4, 9, 6, 5, 3, 0, 7, 2, 1, 6, 7, 0, 2, 7, 4, 2, 2, 8, 4, 8, 8, 1, 1, 3, 0, 9, 2, 3, 0, 6, 3, 1, 4, 2, 6, 1, 6, 1, 8, 7, 2, 6, 3, 9, 4, 5, 5, 6, 8, 7, 3, 6, 2, 9, 3, 3, 6, 7, 3, 5, 8, 3, 4, 0, 9, 3, 7, 3, 5, 7, 3, 3, 0, 4, 6, 5, 2, 2, 4, 1, 7, 1, 8, 4, 0, 3, 9, 3, 8, 7, 0, 3, 4, 3, 3, 0, 2, 2
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2025

Keywords

Examples

			1.149653072167027422848811309230631426161872639...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2Log[3]+7)/8,10,100][[1]]
Previous Showing 61-69 of 69 results.