cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 83 results. Next

A338223 G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 12, 30, 68, 144, 289, 556, 1034, 1868, 3292, 5678, 9608, 15984, 26188, 42314, 67509, 106460, 166090, 256552, 392628, 595696, 896484, 1338894, 1985298, 2923840, 4278448, 6222518, 8997544, 12938368, 18507297, 26340040, 37307326, 52597320, 73825504, 103180702
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 30 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=2..37);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] &
    nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]

Formula

G.f.: (1/4) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^2.
a(n) = Sum_{k=0..n} A014968(k) * A014968(n-k).
a(n) = (1/4) * Sum_{k=1..n-1} A015128(k) * A015128(n-k).
a(n) = (A001934(n) - 2 * A015128(n)) / 4 for n > 0.

A213384 Expansion of phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 12, -8, 6, -24, 24, 0, 12, -30, 24, -24, 8, -24, 48, 0, 6, -48, 36, -24, 24, -48, 24, 0, 24, -30, 72, -32, 0, -72, 48, 0, 12, -48, 48, -48, 30, -24, 72, 0, 24, -96, 48, -24, 24, -72, 48, 0, 8, -54, 84, -48, 24, -72, 96, 0, 48, -48, 24, -72, 0, -72, 96
Offset: 0

Views

Author

Michael Somos, Jun 10 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 6*q + 12*q^2 - 8*q^3 + 6*q^4 - 24*q^5 + 24*q^6 + 12*q^8 - 30*q^9 + ...
		

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A213384List(len) = JacobiTheta4(len, 3)
    A213384List(63) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma0(16), 3/2), 63); A[1] - 6*A[2] + 12*A[3] - 8*A[4]; /* Michael Somos, May 21 2015 */
    
  • Mathematica
    a[ n_] := (-1)^n SquaresR[ 3, n]; (* Michael Somos, May 21 2015 *)
    a[ n_] := (-1)^n Length @ FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9]; (* Michael Somos, May 21 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^3, {q, 0, n}]; (* Michael Somos, May 21 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 / QPochhammer[ q^2])^3, {q, 0, n}]; (* Michael Somos, May 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 / eta(x^2 + A))^3, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * (-x)^k^2, 1 + x * O(x^n))^3, n))}; /* Michael Somos, May 21 2015 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0, 0; 0, 1, 0; 0, 0, 1]; (-1)^n * polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, May 21 2015 */
    

Formula

Expansion of (eta(q)^2 / eta(q^2))^3 in powers of q.
Euler transform of period 2 sequence [ -6, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(15/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008443.
G.f.: (Sum_{k in Z} (-1)^k * x^k^2)^3.
a(n) = (-1)^n * A005875(n). a(2*n) = A004015(n). a(2*n + 1) = -2 * A045826(n). a(4*n) = A005875(n). a(4*n + 1) = -6 * A045834(n). a(4*n + 2) = 12 * A045828(n). a(8*n + 3) = -8 * A008443(n). a(8*n + 7) = 0.

A320908 Expansion of Product_{k>=1} theta_4(x^k), where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, -2, -2, 2, 4, 6, -6, -2, -8, -12, 2, 6, 20, 14, 22, -2, -14, -34, -20, -42, -48, 34, 10, 50, 48, 80, 82, 52, -16, -30, -142, -130, -138, -226, -54, -70, 80, 190, 310, 238, 392, 178, 178, 86, -40, -148, -582, -506, -546, -680, -656, -126, -336, 262, 428, 930
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Comments

Convolution of A288007 and A288098.
Convolution inverse of A301554.

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&*[(1-x^(j*k))/(1+x^(j*k)):j in [1..2*m]]): k in [1..2*m]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    with(numtheory): seq(coeff(series(mul(((1-x^k)/(1+x^k))^tau(k),k=1..n),x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 55; CoefficientList[Series[Product[EllipticTheta[4, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 55; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 55; CoefficientList[Series[Exp[-Sum[DivisorSigma[1, k] x^k (2 + x^k)/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^k)/(1+x^k))^numdiv(k))) \\ Seiichi Manyama, Oct 25 2018
    

Formula

G.f.: Product_{i>=1, j>=1} (1 - x^(i*j))/(1 + x^(i*j)).
G.f.: Product_{k>=1} ((1 - x^k)/(1 + x^k))^d(k), where d(k) is the number of divisors of k (A000005).
G.f.: exp(-Sum_{k>=1} sigma(k)*x^k*(2 + x^k)/(k*(1 - x^(2*k)))).

A320968 Expansion of (Product_{k>0} theta_3(q^k)/theta_4(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 2, 4, 10, 18, 34, 64, 110, 188, 320, 524, 846, 1358, 2130, 3308, 5102, 7750, 11674, 17468, 25862, 38022, 55558, 80532, 116034, 166284, 236784, 335416, 472868, 663146, 925762, 1286920, 1780962, 2454792, 3370806, 4610656, 6284090, 8535868, 11554834, 15591564
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Cf. A000122, A002448, A080054 ((theta_3(q^k)/theta_4(q^k))^(1/2)), A320098, A320967, A320992.

Programs

  • Mathematica
    CoefficientList[Series[1/Product[EllipticTheta[4, 0, q^(2*k - 1)], {k, 1, 50}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    q='q+O('q^80); Vec(prod(k=1,50, eta(q^(2*k))^3/(eta(q^k)^2* eta(q^(4*k))) )) \\ G. C. Greubel, Oct 29 2018

Formula

a(n) = (-1)^n * A320098(n).
Expansion of Product_{k>0} eta(q^(2*k))^3 / (eta(q^k)^2*eta(q^(4*k))).
Expansion of Product_{k>0} 1/theta_4(q^(2*k-1)).

A341364 Expansion of (1 / theta_4(x) - 1)^3 / 8.

Original entry on oeis.org

1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
    nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (1/8) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^3.
a(n) ~ A319552(n)/8 ~ 3*exp(Pi*sqrt(3*n)) / (512*n^(3/2)). - Vaclav Kotesovec, Feb 20 2021

A341365 Expansion of (1 / theta_4(x) - 1)^4 / 16.

Original entry on oeis.org

1, 8, 40, 156, 520, 1552, 4262, 10960, 26716, 62276, 139744, 303412, 640001, 1315832, 2644004, 5204044, 10052182, 19086348, 35672516, 65708116, 119409576, 214289116, 380068582, 666723748, 1157550524, 1990230968, 3390558072, 5726064688, 9590759624, 15938198484, 26289242026
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..34);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 34; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^4/16, {x, 0, nmax}], x] // Drop[#, 4] &
    nmax = 34; CoefficientList[Series[(1/16) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (1/16) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^4.
a(n) ~ A284286(n)/16. - Vaclav Kotesovec, Feb 20 2021

A341368 Expansion of (1 / theta_4(x) - 1)^7 / 128.

Original entry on oeis.org

1, 14, 112, 665, 3248, 13776, 52437, 183080, 595399, 1824109, 5310144, 14787542, 39605363, 102465972, 257005641, 626841236, 1490521109, 3462881324, 7875519169, 17562223791, 38456245849, 82793422502, 175452110162, 366348547908, 754392685046, 1533283745644, 3078157040665
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^7/128, {x, 0, nmax}], x] // Drop[#, 7] &
    nmax = 33; CoefficientList[Series[(1/128) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (1/128) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^7.

A341369 Expansion of (1 / theta_4(x) - 1)^8 / 256.

Original entry on oeis.org

1, 16, 144, 952, 5136, 23904, 99292, 376512, 1324376, 4372632, 13673888, 40787848, 116713350, 321861312, 858693192, 2223428224, 5602833292, 13772292360, 33089930724, 77846837848, 179602530648, 406914172336, 906438716196, 1987418937952, 4293164981849, 9144987747024
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &
    nmax = 33; CoefficientList[Series[(1/256) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (1/256) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^8.

A341370 Expansion of (1 / theta_4(x) - 1)^9 / 512.

Original entry on oeis.org

1, 18, 180, 1311, 7740, 39204, 176388, 721530, 2728053, 9651056, 32246892, 102515508, 311923386, 912771468, 2579132196, 7060677537, 18781247700, 48660380190, 123061973176, 304351869708, 737293187286, 1752035386188, 4089222211212, 9384936015492, 21201250825554
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^9/512, {x, 0, nmax}], x] // Drop[#, 9] &
    nmax = 33; CoefficientList[Series[(1/512) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (1/512) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^9.

A320992 Expansion of (Product_{k>0} theta_4(q^k)/theta_3(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, -2, 0, -2, 6, -2, 4, -6, 8, -16, 8, -14, 26, -26, 24, -30, 58, -50, 60, -78, 90, -118, 104, -138, 192, -224, 204, -268, 366, -354, 412, -474, 596, -694, 724, -818, 1052, -1162, 1176, -1470, 1756, -1918, 2052, -2434, 2814, -3168, 3396, -3806, 4674, -5124, 5396
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2018

Keywords

Crossrefs

Convolution inverse of A320968.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[Sqrt[EllipticTheta[4, 0, x^k] / EllipticTheta[3, 0, x^k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 26 2018 *)

Formula

a(n) = (-1)^n * A320078(n).
Expansion of Product_{k>0} (eta(q^k)^2*eta(q^(4*k))) / eta(q^(2*k))^3.
Expansion of Product_{k>0} theta_4(q^(2*k-1)).
a(n) ~ (-1)^n * (log(2))^(1/4) * exp(Pi*sqrt(n*log(2)/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Oct 26 2018
Previous Showing 11-20 of 83 results. Next