cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 384 results. Next

A317840 Difference between Stern's Diatomic sequence (A002487) and its Möbius transform (A317839).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 3, 4, 1, 1, 4, 1, 3, 4, 5, 1, 2, 3, 5, 4, 3, 1, 4, 1, 1, 6, 5, 5, 4, 1, 7, 6, 3, 1, 8, 1, 5, 6, 7, 1, 2, 3, 7, 6, 5, 1, 8, 7, 3, 8, 7, 1, 4, 1, 5, 10, 1, 7, 6, 1, 5, 8, 9, 1, 4, 1, 11, 8, 7, 7, 10, 1, 3, 8, 11, 1, 8, 7, 13, 8, 5, 1, 12, 7, 7, 6, 9, 9, 2, 1, 9, 8, 7, 1, 12, 1, 5, 14
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2018

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A317840(n) = -sumdiv(n,d,(dA002487(d));

Formula

a(n) = -Sum_{d|n, dA008683(n/d)*A002487(d).
a(n) = A002487(n) - A317839(n).

A318306 Additive with a(p^e) = A002487(e).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2018

Keywords

Crossrefs

Cf. also A046644.

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A318306(n) = vecsum(apply(e -> A002487(e),factor(n)[,2]));
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A318306(n): return sum(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(e)[-1:2:-1],(1,0))) for e in factorint(n).values()) # Chai Wah Wu, May 18 2023

Formula

a(n) = A007814(A318307(n)).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.15790080909728804399..., where f(x) = -x + x * (1-x) * Product{k>=0} (1 + x^(2^k) + x^(2^(k + 1))). - Amiram Eldar, Feb 11 2024

A324293 a(n) = A002487(sigma(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 5, 4, 2, 3, 3, 2, 2, 5, 4, 10, 3, 8, 1, 4, 2, 4, 5, 8, 3, 3, 4, 4, 1, 6, 2, 8, 2, 19, 7, 4, 3, 12, 8, 2, 5, 8, 10, 4, 2, 5, 10, 16, 4, 9, 8, 4, 4, 4, 3, 12, 4, 8, 5, 2, 5, 7, 8, 4, 5, 6, 2, 4, 4, 20, 11, 10, 5, 9, 2, 8, 3, 16, 13, 6, 8, 3, 8, 6, 4, 12, 12, 18, 3, 8, 1, 4, 4, 6, 9, 34, 10, 27, 12, 8, 5, 18, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ Modified from the one given in A002487, sign not actually needed here.
    A324293(n) = A002487(sigma(n));

Formula

a(n) = A002487(A000203(n)).

A324337 a(n) = A002487(A006068(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 3, 4, 3, 2, 5, 1, 4, 5, 3, 5, 4, 3, 7, 2, 7, 8, 5, 1, 5, 7, 4, 7, 5, 3, 8, 6, 5, 4, 9, 3, 10, 11, 7, 2, 9, 12, 7, 11, 8, 5, 13, 1, 6, 9, 5, 10, 7, 4, 11, 9, 7, 5, 12, 3, 11, 13, 8, 7, 6, 5, 11, 4, 13, 14, 9, 3, 13, 17, 10, 15, 11, 7, 18, 2, 11, 16, 9, 17, 12, 7, 19, 14, 11, 8, 19, 5, 18, 21, 13, 1, 7, 11, 6, 13, 9, 5, 14, 13, 10
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

Like in A324338, a few terms preceding each position n = 2^k seem to be a batch of nearby Fibonacci numbers in some order.
For all n > 0 A324338(n)/A324337(n) constitutes an enumeration system of all positive rationals. For all n > 0 A324338(n) + A324337(n) = A071585(n). - Yosu Yurramendi, Oct 22 2019

Crossrefs

Programs

Formula

From Yosu Yurramendi, Oct 22 2019: (Start)
a(2^m+ k) = A324338(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1)
a(2^m+2^(m-1)+k) = A324338(2^m+ k), m > 0, 0 <= k < 2^(m-1). (End)
a(n) = A324338(A063946(n)), n > 0. Yosu Yurramendi, Nov 04 2019
a(n) = A002487(A248663(A283477(n))). - Antti Karttunen, Nov 06 2019
a(n) = A002487(1+A233279(n)). - Yosu Yurramendi, Nov 08 2019
From Yosu Yurramendi, Nov 28 2019: (Start)
a(2^(m+1)+k) - a(2^m+k) = A324338(k), m >= 0, 0 <= k < 2^m.
a(A059893(2^(m+1)+A001969(k+1))) - a(A059893(2^m+A001969(k+1))) = A071585(k), m >= 0, 0 <= k < 2^(m-1).
a(A059893(2^(m+1)+ A000069(k+1))) = A071585(k), m >= 1, 0 <= k < 2^(m-1). (End)
From Yosu Yurramendi, Nov 29 2019: (Start)
For n > 0:
A324338(n) + A324337(n) = A071585(n).
A324338(2*A001969(n) )-A324337(2*A001969(n) ) = A071585(n-1)
A324338(2*A001969(n)+1)-A324337(2*A001969(n)+1) = -A324337(n-1)
A324338(2*A000069(n) )-A324337(2*A000069(n) ) = -A071585(n-1)
A324338(2*A000069(n)+1)-A324337(2*A000069(n)+1) = A324338(n-1) (End)
a(n) = A002487(1+A233279(n)). - Yosu Yurramendi, Dec 27 2019

A324338 a(n) = A002487(1+A006068(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 2, 1, 4, 5, 3, 4, 3, 2, 5, 1, 5, 7, 4, 7, 5, 3, 8, 5, 4, 3, 7, 2, 7, 8, 5, 1, 6, 9, 5, 10, 7, 4, 11, 9, 7, 5, 12, 3, 11, 13, 8, 6, 5, 4, 9, 3, 10, 11, 7, 2, 9, 12, 7, 11, 8, 5, 13, 1, 7, 11, 6, 13, 9, 5, 14, 13, 10, 7, 17, 4, 15, 18, 11, 11, 9, 7, 16, 5, 17, 19, 12, 3, 14, 19, 11, 18, 13, 8, 21, 7, 6, 5, 11, 4, 13, 14, 9, 3, 13
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

Like in A324337, a few terms preceding each 2^k-th term (here always 1) seem to consist of a batch of nearby Fibonacci numbers (A000045) in some order. For example, a(65533) = 987, a(65534) = 610 and a(65535) = 1597.
For all n > 0 A324338(n)/A324337(n) constitutes an enumeration system of all positive rationals. For all n > 0 A324338(n) + A324337(n) = A071585(n). - Yosu Yurramendi, Oct 22 2019

Crossrefs

Programs

Formula

a(n) = A002487(1+A006068(n)).
a(2^n) = 1 for all n >= 0.
From Yosu Yurramendi, Oct 22 2019: (Start)
a(2^m+2^(m-1)+k) = A324337(2^m+ k), m > 0, 0 <= k < 2^(m-1)
a(2^m+ k) = A324337(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1). (End)
a(n) = A324337(A063946(n)), n > 0. Yosu Yurramendi, Nov 04 2019
a(n) = A002487(A233279(n)), n > 0. Yosu Yurramendi, Nov 08 2019
From Yosu Yurramendi, Nov 28 2019: (Start)
a(2^(m+1)+k) - a(2^m+k) = A324337(k), m >= 0, 0 <= k < 2^m.
a(A059893(2^(m+1)+A000069(k+1))) - a(A059893(2^m+A000069(k+1))) = A071585(k), m >= 1, 0 <= k < 2^(m-1).
a(A059893(2^m+ A001969(k+1))) = A071585(k), m >= 0, 0 <= k < 2^(m-1). (End)
From Yosu Yurramendi, Nov 29 2019: (Start)
For n > 0:
A324338(n) + A324337(n) = A071585(n).
A324338(2*A001969(n) )-A324337(2*A001969(n) ) = A071585(n-1)
A324338(2*A001969(n)+1)-A324337(2*A001969(n)+1) = -A324337(n-1)
A324338(2*A000069(n) )-A324337(2*A000069(n) ) = -A071585(n-1)
A324338(2*A000069(n)+1)-A324337(2*A000069(n)+1) = A324338(n-1) (End)
a(n) = A002487(A233279(n)). Yosu Yurramendi, Dec 27 2019

A070990 First differences of A002487.

Original entry on oeis.org

1, -1, 2, -1, 1, -2, 3, -1, 2, -3, 3, -2, 1, -3, 4, -1, 3, -4, 5, -3, 2, -5, 5, -2, 3, -5, 4, -3, 1, -4, 5, -1, 4, -5, 7, -4, 3, -7, 8, -3, 5, -8, 7, -5, 2, -7, 7, -2, 5, -7, 8, -5, 3, -8, 7, -3, 4, -7, 5, -4, 1, -5, 6, -1, 5, -6, 9, -5, 4, -9, 11, -4, 7, -11, 10, -7, 3, -10, 11, -3, 8, -11, 13, -8, 5, -13, 12, -5, 7, -12, 9, -7, 2, -9, 9, -2, 7, -9, 12, -7
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2002

Keywords

Crossrefs

Cf. A002487.

Formula

-a(2n+3) = a(2n) = A002487(n+2), n >= 0. - Ralf Stephan, Aug 17 2003
G.f.: -1/x^2 + ((1 - x)/x^2)*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Feb 28 2017

A071884 Trajectory of 37 under map x -> A002487(x)*A002487(x+1).

Original entry on oeis.org

37, 77, 170, 714, 3450, 10414, 68145, 303610, 721305, 1815066, 17782782, 4598150, 68178460, 133118649, 585506070, 20663527908, 777507763200, 264506067126, 73112062114130, 5907184479605316, 516068243814152148
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Jun 10 2002

Keywords

Comments

All smaller starting values lead into a cycle after a small number of steps; this appears to have an infinite trajectory.

Crossrefs

Programs

  • Maple
    # n is starting value, m is length of trajectory to compute
    f := proc(n,m) local t1,i,j; t1 := [n]; for i from 2 to m do j := t1[i-1]; t1 := [op(t1), A002487(j)*A002487(j+1)]; od: t1; end;

A071885 Trajectory of 38 under map x -> A002487(x)*A002487(x+1).

Original entry on oeis.org

38, 70, 117, 198, 368, 210, 558, 1312, 693, 3920, 2438, 6900, 17138, 43792, 105939, 553150, 862695, 5466578, 262720694, 8088309190, 155799611901, 2918284055518, 415202250061643, 1166813484199476, 224311803609338424
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Jun 10 2002

Keywords

Crossrefs

A071886 Trajectory of 41 under map x -> A002487(x)*A002487(x+1).

Original entry on oeis.org

41, 88, 85, 273, 456, 370, 897, 418, 943, 561, 1240, 2457, 13860, 47652, 208380, 234724, 1687203, 8509066, 67089945, 13299944, 72454532, 940541150, 820208766, 5192523560, 13313765208, 46414871454, 6589784048694, 93614939731600
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Jun 10 2002

Keywords

Crossrefs

A071887 Conjectured values of n whose trajectory under map x -> A002487(x)*A002487(x+1) does not go into a cycle.

Original entry on oeis.org

37, 38, 41, 54, 57, 58
Offset: 1

Views

Author

J. H. Conway, Jun 10 2002

Keywords

Comments

Why isn't 42 in this list? It does not enter a cycle in under 100 iterations which is as far as I could check. [Sean A. Irvine, Oct 05 2011]

Crossrefs

Previous Showing 51-60 of 384 results. Next